Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation organic solvents

Insoluble in water, soluble in organic solvents b.p. — 15°C. Prepared by treating 1,4-dibromo-butane with metallic sodium. Reduced to n-butane by hydrogen at 200" C in presence of nickel catalysts. [Pg.122]

The species at the centre of tire rings is usually Si or Ge and tire bridging atom is oxygen. In one study tire peripheral hydrogens on tire phtlialocyanine molecules were replaced by alkyl groups and tire resulting polymers could be rendered soluble in ordinary organic solvents [108, 109 and 110]. Successful deposition of several of tliese materials has been achieved and different techniques were employed to study tlieir stmctural properties [109, ill, ill, ill and 1141. [Pg.2620]

For very strong acids, it is usually possible to use a solvent of a more conventional kind thus, for example, the acid HBF, tetra fluoroboric acid, is extremely strong, because attachment of the hydrogen to the tetrafluoroborate group BF is essentially ionic, H BF and hence dissociation to an acid is very easy. Hence HBF behaves as a strong acid in, for example, an organic solvent, in which it can be used. [Pg.89]

B). Many nitriles when treated with hydrogen peroxide in warm alkaline solution undergo hydrolysis to amides which can thus be readily obtained in high yield. Insoluble liquid nitriles can be treated directly in the aqueous suspension, but for insoluble solid nitriles the addition of a suitable organic solvent to give a complete solution may be desirable, although the completion of the hydrolysis may not then be so readily detected. [Pg.193]

Heat a little pseudo-saccharin chloride with excess of the anhydrous alcohol in a test-tube until hydrogen chloride is no longer evolved. Recrystallise from alcohol or other organic solvent. [Pg.266]

Table 1.2. Relative rate constants of some selected Diels-Alder reactions in water compared to organic solvents of different hydrogen bond donor capacities. Table 1.2. Relative rate constants of some selected Diels-Alder reactions in water compared to organic solvents of different hydrogen bond donor capacities.
The flame can become unstable if too large an amount of vaporized liquid is introduced or if the sample contains substances that can interfere with the basic operation of the plasma. For example, water vapor, organic solvents, air, and hydrogen all lead to instability of the plasma flame if their concentrations become too high. [Pg.397]

Physical Properties. Tetrahydrofurfuryl alcohol (2-tetrahydrofuranmethanol) [97-99-4] (20) is a colorless, high-boiling liquid with a mild, pleasant odor. It is completely miscible with water and common organic solvents. Tetrahydrofurfuryl alcohol is an excellent solvent, moderately hydrogen-bonded, essentially nontoxic, biodegradable, and has a low photochemical oxidation potential. Most appHcations make use of its high solvency. The more important physical properties of tetrahydrofurfuryl alcohol are Hsted in Table 1. [Pg.82]

The direct, one-step production of DMF from carbon monoxide, hydrogen, and ammonia has also been reported. A mthenium carbonyl catalyst is used, either ia a polar organic solvent (20) or ia a phosphonium molten salt medium (21). [Pg.513]

Hydrogen Chloride-Organic Compound Systems. The solubihty of hydrogen chloride in many solvents follows Henry s law. Notable exceptions are HCl in polyhydroxy compounds such as ethylene glycol (see Glycols), which have characteristics similar to those of water. Solubility data of hydrogen chloride in various organic solvents are Hsted in Table 10. [Pg.443]

Chlorine in the presence of hydrogen chloride in an anhydrous organic solvent yields 2,4,6-trichloroariiline [634-93-5] (36,37). A mixture of aniline vapor and chlorine, diluted with an inert gas, over activated carbon at 400°C yields o-chloroaruline [95-51-2] (38). Aniline when treated with chlorine gas, in an aqueous mixture of sulfuric acid and acetic acid, at 105—115°C gives an 85—95% yield of -chlorarul [118-75-2] (39). [Pg.231]

The chemical production of aminophenols via the reduction of nitrobenzene occurs in two stages. Nitrobenzene [98-95-3] is first selectively reduced with hydrogen in the presence of Raney copper to phenylhydroxylamine in an organic solvent such as 2-propanol (37). With the addition of dilute sulfuric acid, nucleophilic attack by water on the aromatic ring of /V-phenylhydroxylamine [100-65-2] takes place to form 2- and 4-aminophenol. The by-product, 4,4 -diaminodiphenyl ether [13174-32-8] presumably arises in a similar manner from attack on the ring by a molecule of 4-aminophenol (38,39). Aniline [62-53-3] is produced via further reduction (40,41). [Pg.311]

The replacement of the hydrogen of the methylo1 compound with an alkyl group renders the compound much more soluble in organic solvents and more stable. This reaction is also cataly2ed by acids and usually carried out in the presence of considerable excess alcohol to suppress the competing self-condensation reaction. After neutrali2ation of the acid catalyst, the excess alcohol may be stripped or left as a solvent for the amino resin. [Pg.324]

Peracid Processes. Peracids, derived from hydrogen peroxide reaction with the corresponding carboxyUc acids in the presence of sulfuric acid and water, react with propylene in the presence of a chlorinated organic solvent to yield propylene oxide and carboxyUc acid (194—196). [Pg.141]

Other wet oxidation processes under development as of the mid-1990s include Marathon Oil s Hysulf process which uses an organic solvent to remove the hydrogen sulfide. One significant distinction of the Hysulf process is that in addition to sulfur, hydrogen is produced. [Pg.214]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]


See other pages where Hydrogenation organic solvents is mentioned: [Pg.123]    [Pg.915]    [Pg.22]    [Pg.24]    [Pg.28]    [Pg.31]    [Pg.44]    [Pg.1142]    [Pg.222]    [Pg.236]    [Pg.319]    [Pg.326]    [Pg.207]    [Pg.361]    [Pg.188]    [Pg.298]    [Pg.350]    [Pg.414]    [Pg.476]    [Pg.476]    [Pg.478]    [Pg.279]    [Pg.226]    [Pg.114]    [Pg.133]    [Pg.274]    [Pg.97]    [Pg.344]    [Pg.115]    [Pg.307]    [Pg.311]    [Pg.309]    [Pg.77]    [Pg.253]    [Pg.134]   
See also in sourсe #XX -- [ Pg.4 , Pg.6 ]




SEARCH



Hydrogenation solvent

Organic hydrogen

© 2024 chempedia.info