Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen, solid phases

In gas-solid extractions the sample is passed through a container packed with a solid adsorbent. One example of the application of gas-solid extraction is in the analysis of organic compounds for carbon and hydrogen. The sample is combusted in a flowing stream of O2, and the gaseous combustion products are passed through a series of solid-phase adsorbents that remove the CO2 and 1T20. [Pg.213]

Other PK variations include microwave conditions, solid-phase synthesis, and the fixation of atmospheric nitrogen as the nitrogen source (27—>28). Hexamethyldisilazane (HMDS) is also an excellent ammonia equivalent in the PK synthesis. For example, 2,5-hexanedione and HMDS on alumina gives 2,5-dimethylpyrrole in 81% yield at room temperature. Ammonium formate can be used as a nitrogen source in the PK synthesis of pyrroles from l,4-diaryl-2-butene-l,4-diones under Pd-catalyzed transfer hydrogenation conditions. [Pg.82]

Eda and Kurth applied a similar solid-phase combinatorial strategy for synthesis of pyridinium, tetrahydropyridine, and piperidine frameworks as potential inhibitors of vesicular acetylcholine transporter. One member of the small library produced was prepared from amino-functionalized trityl resin reacting with a 4-phenyl Zincke salt to give resin-bound product 62 (Scheme 8.4.21). After ion exchange and cleavage from the resin, pyridinium 63 was isolated. Alternatively, borohydride reduction of 62 led to the 1,2,3,6-tetrahydropyridine 64, which could be hydrogenated to the corresponding piperidine 65. [Pg.364]

Of this material 1.0 g is dissolved in 150 ml of warm 95% ethyl alcohol. To the solution is added 1.0 g of 5% palladium on carbon catalyst, and the mixture is hydrogenated at room temperature and atmospheric pressure by bubbling hydrogen into it for 3 hours with stirring. The hydrogenation product is filtered. The solid phase, comprising the catalyst and the desired product, is suspended in ethyl acetate and water and adjusted to pH 2 with hydrochloric acid. The suspension is filtered to remove the catalyst. The aqueous phase is separated from the filtrate, and is evaporated under vacuum to recover the desired product, 7-(D-a-aminophenylacetamido)cephalosporanic acid. [Pg.283]

Thus the diagram shows the solid phases of iron, the activities of metal ions and the pressures of hydrogen and oxygen gas that are at equilibrium at any given potential and pH when pure iron reacts with pure water. [Pg.67]

Figure 1. Ideal pressure-composition isotherms showing the hydrogen solid-solution phase, a, and the hydride phase, j3. The plateau marks the region of coexistence of the a and fl phases. As the temperature is increased the plateau narrows and eventually disappears at some consolule temperature... Figure 1. Ideal pressure-composition isotherms showing the hydrogen solid-solution phase, a, and the hydride phase, j3. The plateau marks the region of coexistence of the a and fl phases. As the temperature is increased the plateau narrows and eventually disappears at some consolule temperature...
K2C03 3 H202 contains hydrogen peroxide of crystallization and the solid phase decomposition involves the production of the free radicals OH and HOi, detected by EPR measurements [661]. a—Time curves were sigmoid and E = 138 kJ mole-1 for reactions in the range 333—348 K. The reaction rate was more rapid in vacuum than in nitrogen, possibly through an effect on rate of escape of product water, and was also determined by particle size. From microscopic observations, it was concluded that centres of decomposition were related to the distribution of dislocations in the reactant particles. [Pg.151]

These reactors contain suspended solid particles. A discontinuous gas phase is sparged into the reactor. Coal liquefaction is an example where the solid is consumed by the reaction. The three phases are hydrogen, a hydrocarbon-solvent/ product mixture, and solid coal. Microbial cells immobilized on a particulate substrate are an example of a three-phase system where the slurried phase is catalytic. The liquid phase is water that contains the organic substrate. The gas phase supplies oxygen and removes carbon dioxide. The solid phase consists of microbial cells grown on the surface of a nonconsumable solid such as activated carbon. [Pg.413]

Life as we know it depends on this existence of water as a liquid. Biochemical processes require free movement of chemicals, which cannot occur in the solid phase. Biochemical stmctures contain many interlocking parts that would not be stable in the gas phase. Thus, the liquid phase is best suited for life. Moreover, water is an excellent solvent, particularly for molecules that can form hydrogen bonds. As we describe in Chapter JA, the molecular building blocks of living matter are rich in groups that form hydrogen bonds. This allows biological molecules to be synthesized, move about, and assemble into complex structures, all in aqueous solution. [Pg.845]

IR spectra of thiolane oxides in the solid phase were shown to be most outstandingly different in the sulfoxide region depending on the particular crystalline state/structure a fact which can be used to advantage for conformational analysis. Also, as one could expect, the sulfoxide absorptions indicate strong hydrogen bonding. [Pg.461]

In this cell, the following independent phases must be considered platinum, silver, gaseous hydrogen, solid silver chloride electrolyte, and an aqueous solution of hydrogen chloride. In order to be able to determine the EMF of the cell, the leads must be made of the same material and thus, to simplify matters, a platinum lead must be connected to the silver electrode. It will be seen in the conclusion to this section that the electromotive force of a cell does not depend on the material from which the leads are made, so that the whole derivation could be carried out with different, e.g. copper, leads. In addition to Cl- and H30+ ions (further written as H+), the solution also contains Ag+ ions in a small concentration corresponding to a saturated solution of silver chloride in hydrochloric acid. Thus, the following scheme of the phases can be written (the parentheses enclose the species present in the given phase) ... [Pg.172]

The carboxyl functions in the new structures are buried within the clefts in a manner that discourages the formation of the intermolecular hydrogen bonded dimers which are usually observed in the solution and solid phases. Unusual acid-base behavior is one consequence. In the smallest system 11 (represented by the benzene spacer) a tremendous difference in pKa s (6 units) can be observed for the two ionizations 14). [Pg.200]

In gc there is only one phase (the stationary liquid or solid phase) that is available for interaction with the sample molecules. Because the mobile phase is a gas, all sample vapours are soluble in it in all proportions. In hplc both the stationary phase and the mobile phase can interact selectively with the sample. Interactions such as complexation or hydrogen bonding that are absent in the gc mobile phase may occur in the hplc mobile phase. The variety of these selective interactions can also be increased by suitable chemical modification of the silica surface, hence hplc is a more versatile technique than gc, and can often achieve more difficult separations. [Pg.20]

In order to elucidate the causes of the increased stability of the hydrolyzed cluster ions compared with the unhydrolyzed ions, further studies were made of the behaviour of [Te2X8]3 (where X = Cl,Br, or I) in solutions of hydrogen halides [43,52,80,87]. The studies were performed mainly in relation to the most stable and most readily synthesized [Tc2C18]3- ion (Fig. la) kinetic methods with optical recording were employed. The identity of the reaction products was in most cases confirmed by their isolation in the solid phase. The studies showed that the stability of the [Tc2X8]3 ions (where X = Cl, Br, or I) in aqueous solutions is determined by the sum of competing processes acid hydrolysis complex formation with subsequent disproportionation and dissociation of the M-M bonds, and oxidative addition of atmospheric oxygen to the Tc-Tc multiple bond. [Pg.219]

In another study, the carrier protein was replaced by an enzyme compatible solid-phase resin (PEGA), and enzyme-catalyzed cyclization was used to probe substrate specificity. This study demonstrated also that oxo-esters are tolerated as substrates for TE domains, and then-preparation in library format served as an excellent tool for substrate specificity studies, as well as for preparation of cyclized peptides. Figure 13.11 shows how the TycA TE showed selectivity for only residues 1 and 9 (colored in red), and changes at all other residues were tolerated [42]. Hydrogen bonding interactions are shown in green. Several compounds made from this series were shown to demonstrate improved therapeutic indices (with respect to hemolysis) while retaining antimicrobial activity. [Pg.301]


See other pages where Hydrogen, solid phases is mentioned: [Pg.288]    [Pg.288]    [Pg.1960]    [Pg.82]    [Pg.171]    [Pg.144]    [Pg.314]    [Pg.82]    [Pg.283]    [Pg.591]    [Pg.1047]    [Pg.461]    [Pg.210]    [Pg.19]    [Pg.247]    [Pg.343]    [Pg.461]    [Pg.111]    [Pg.412]    [Pg.98]    [Pg.265]    [Pg.201]    [Pg.314]    [Pg.343]    [Pg.225]    [Pg.293]    [Pg.153]    [Pg.252]    [Pg.80]    [Pg.86]    [Pg.16]    [Pg.91]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Carbon-hydrogen bonds solid-phase reactions

Hydrogen atom solid phases

Hydrogen in solid phase

Hydrogen solid

Hydrogen solid phase, description

Phase hydrogenation

Solid phase extraction, hydrogen peroxide

Solid phase extraction, hydrogen peroxide determination

© 2024 chempedia.info