Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide cations

Eatty amine oxides are most frequendy prepared from alkyldimethylarnines by reaction with hydrogen peroxide. Aqueous 2-propanol is used as solvent to prepare amine oxides at concentrations of 50—60%. With water only as a solvent, amine oxides can only be prepared at lower concentrations because aqueous solutions are very viscous. Eatty amine oxides are weak cationic surfactants. [Pg.219]

Heavily pigmented wools such as karakul require a more stringent approach, known as mordant bleaching, in which a metal salt is first appHed. The metal cations ate preferentially absorbed by the melanin pigment, where they subsequendy decompose hydrogen peroxide to produce highly aggressive hydroxyl free radicals, which then attack and bleach the melanin (114). [Pg.349]

The methylene blue test can also be used to determine cation exchange capacity of clays and shales. In the test a weighed amount of clay is dispersed into water by a high-speed stirrer. Titration is carried out as for drilling muds, except that hydrogen peroxide is not added. The cation exchange capacity of clays is expressed as milliequivalents of methylene blue per 100 g of clay. [Pg.657]

A particularly interesting system for the epoxidation of propylene to propylene oxide, working under pseudo-heterogeneous conditions, was reported by Zuwei and coworkers [61]. The catalyst, which was based on the Venturello anion combined with long-chained alkylpyridinium cations, showed unique solubility properties. I11 the presence of hydrogen peroxide the catalyst was fully soluble in the solvent, a 4 3 mixture of toluene and tributyl phosphate, but when no more oxidant was left, the tungsten catalyst precipitated and could simply be removed from the... [Pg.200]

A rapid and clean oxidation of sulphides to sulphoxides can also be carried out using the titanium(III) trichloride/hydrogen peroxide reagent35. On a milimole scale, the oxidation takes place in a time shorter than 20 min upon addition of a solution of hydrogen peroxide to a solution of the sulphide and titanium(III) trichloride in methanol at room temperature. It was suggested that the formation of a sulphoxide in this reaction resulted from a direct coupling of the hydroxy radical with cation radical 20 formed at the sulphur atom of the sulphide (equation 6). [Pg.240]

Sodium 4-pyridinesulfonate has been obtained from the oxidation of 4 pyndinethiol with hydrogen peroxide in sodium hydroxide solution,15 and from the reaction of 4-chloropyridme with aqueous sodium sulfite16 The salt has been converted to the free acid by treatment with a cation-exchange resin 1011 or with sulfuric acid.11... [Pg.100]

Oxidation of thiophene with Fenton-like reagents produces 2-hydroxythiophene of which the 2(570 One isomer is the most stable (Eq. 1) <96JCR(S)242>. In contrast, methyltrioxorhenium (Vn) catalyzed hydrogen peroxide oxidation of thiophene and its derivatives forms first the sulfoxide and ultimately the sulfone derivatives <96107211>. Anodic oxidation of aminated dibenzothiophene produces stable radical cation salts <96BSF597>. Reduction of dihalothiophene at carbon cathodes produces the first example of an electrochemical halogen dance reaction (Eq. 2) <96JOC8074>. [Pg.78]

Analyses for the Saxitoxins. Early methods for analysis of the saxitoxins evolved from those used for toxin isolation and purification. The principal landmarks in the development of preparative separation techniques for the saxitoxins were 1) the employment of carboxylate cation exchange resins by Schantz et al. (82) 2) the use of the polyacrylamide gel Bio-Gel P2 by Buckley and by Shimizu (5,78) and 3) the development by Buckley of an effective TLC system, including a new solvent mixture and a new visualization technique (83). The solvent mixture, designated by Buckley as "E", remains the best for general resolution of the saxitoxins. The visualization method, oxidation of the saxitoxins on silica gel TLC plates to fluorescent degradation products with hydrogen peroxide and heat, is an adaptation of the Bates and Rapoport fluorescence assay for saxitoxin in solution. Curiously, while peroxide oxidation in solution provides little or no response for the N-l-hydroxy saxitoxins, peroxide spray on TLC plates is a sensitive test for all saxitoxin derivatives with the C-12 gemdiol intact. [Pg.47]

Vinyl monomers may be polymerized at favorable rates in an aqueous medium containing an emulsifier and a water-soluble initiator. A typical simple Tecipe would consist of the following ingredients with their proportions indicated in parts by weight 100 of monomer, 180 of water, 2 to 5 of a fatty acid soap, and 0.1 to 0.5 of potassium persulfate. Cationic soaps (e.g., dodecylamine hydrochloride) may be used instead of the fatty acid soap, and various other initiators may replace the persulfate (e.g., hydrogen peroxide and ferrous ion, or a water-soluble organic hydroperoxide). [Pg.203]

Figure 4 Stabilized bromine antimicrobials are produced by eosinophils, a type of mammalian white blood cell. Bacteria are captured by phagocytosis and contained intracellularly within vesicles called phagosomes. Granules release cationic surfactants, lytic enzymes, and eosinophil peroxidase into the phagosome in a process known as degranulation. Eosinophil peroxidase, an enzyme that is structurally similar to the bromoperoxidases found in seaweed (Figure I), selectively catalyzes oxidation of bromide to hypobromite by reducing hydrogen peroxide to water. The hypobromite immediately reacts with nitrogenous stabilizers such as aminoethanesulfonic acid (taurine) to form more effective and less toxic antimicrobial agents. Figure 4 Stabilized bromine antimicrobials are produced by eosinophils, a type of mammalian white blood cell. Bacteria are captured by phagocytosis and contained intracellularly within vesicles called phagosomes. Granules release cationic surfactants, lytic enzymes, and eosinophil peroxidase into the phagosome in a process known as degranulation. Eosinophil peroxidase, an enzyme that is structurally similar to the bromoperoxidases found in seaweed (Figure I), selectively catalyzes oxidation of bromide to hypobromite by reducing hydrogen peroxide to water. The hypobromite immediately reacts with nitrogenous stabilizers such as aminoethanesulfonic acid (taurine) to form more effective and less toxic antimicrobial agents.
Stable cationic complexes of Au1 are formed with thiourea in acidic solutions in the presence of oxidants such as FeIiror hydrogen peroxide,68... [Pg.766]

Clays are usually cation-exchangeable aluminosilicates, and exfoliated clay particles have a platelet shape with nanoscopic size. Cast protein-clay films on electrodes have been used to immobilize proteins. The Clay/Mb electrode has good electrocatalytic properties for the reduction of oxygen and hydrogen peroxide [236] and the biosensors can also be made based on these properties. [Pg.582]

Extracellular peroxidases are produced by Streptomyces chromofuscus, with the capability to decolorize azo dyes associated to ligninolytic activity in aerobiosis. Azo dyes are converted to cationic radicals, which are subjected to nucleophilic attack by water or hydrogen peroxide molecules, producing reactive compounds that undergo redox reactions that result in a more stable intermediate [37]. [Pg.201]


See other pages where Hydrogen peroxide cations is mentioned: [Pg.280]    [Pg.318]    [Pg.44]    [Pg.472]    [Pg.477]    [Pg.433]    [Pg.504]    [Pg.96]    [Pg.363]    [Pg.257]    [Pg.186]    [Pg.36]    [Pg.14]    [Pg.33]    [Pg.172]    [Pg.657]    [Pg.834]    [Pg.664]    [Pg.119]    [Pg.12]    [Pg.11]    [Pg.119]    [Pg.195]    [Pg.272]    [Pg.226]    [Pg.56]    [Pg.915]    [Pg.42]    [Pg.127]    [Pg.133]    [Pg.67]    [Pg.158]    [Pg.218]    [Pg.95]   
See also in sourсe #XX -- [ Pg.224 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Hydrogen cations

© 2024 chempedia.info