Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen Ions effect

In all cases, the rate of the chlorite metal reaction is faster than the other halogenate reaction by a factor of between 5 and 50, depending on the temperature and the hydrogen ion concentration. Unfortunately, there are some complicated hydrogen ion effects on these reactions, and some of these comparisons cannot be made directly. [Pg.147]

Most of the data is taken from earlier experimental work. The concentrations in the feed and reference values are taken from mouse and rat brain data for the sake of illustration. The membrane permeability parameters for S2 and S3 are assumed equal to the value for si. The normalized parameter > is taken equal to I>2, which was found earlier experimentally. The kinetic parameters 6m for m = 1,.., 8 of reaction (1) are chosen by using a known dissociation constant and by keeping the experimentally found proportion for reaction (2) on substrate-inhibition and hydrogen-ion effects. [Pg.231]

The sodium ethanoate which is largely dissociated, serves as a source of ethanoate ions, which combine with any hydrogen ions which may be added to the solution to yield more of the acid. The addition of hydrogen ions has therefore much less effect on such a solution than it would have on water. In a similar manner, the solution of the salt of a strong acid and a weak base, in the presence of a weak base, has a pH that is insensitive to additions of alkali. [Pg.69]

Sa.lts Salting out metal chlorides from aqueous solutions by the common ion effect upon addition of HCl is utilized in many practical apphcations. Typical data for ferrous chloride [13478-10-9] FeCl2, potassium chloride [7447-40-7] KCl, and NaCl are shown in Table 9. The properties of the FeCl2-HCL-H2 0 system are important to the steel-pickling industry (see Metal SURFACE TREATMENTS Steel). Other metal chlorides that are salted out by the addition of hydrogen chloride to aqueous solutions include those of magnesium, strontium, and barium. [Pg.442]

First Carbonation. The process stream OH is raised to 3.0 with carbon dioxide. Juice is recycled either internally or in a separate vessel to provide seed for calcium carbonate growth. Retention time is 15—20 min at 80—85°C. OH of the juice purification process streams is more descriptive than pH for two reasons first, all of the important solution chemistry depends on reactions of the hydroxyl ion rather than of the hydrogen ion and second, the nature of the C0 2 U20-Ca " equiUbria results in a OH which is independent of the temperature of the solution. AH of the temperature effects on the dissociation constant of water are reflected by the pH. [Pg.26]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

The extent of displacement depends on the relative stabiUties of the complexes and the mass action effect of an excess of M For equivalent total amounts of M and M, K must be on the order of 10 for 99% complete displacement to occur. Similar considerations apply for the displacement of L from ML by U. The situation is quite analogous to the familiar competition of two bases for the hydrogen ion. [Pg.386]

DispEcement. In many of the appHcations of chelating agents, the overall effect appears to be a displacement reaction, although the mechanism probably comprises dissociations and recombinations. The basis for many analytical titrations is the displacement of hydrogen ions by a metal, and the displacement of metal by hydrogen ions or other metal ions is a step in metal recovery processes. Some analytical pM indicators function by changing color as one chelant is displaced from its metal by another. [Pg.393]

The pH effect in chelation is utilized to Hberate metals from thein chelates that have participated in another stage of a process, so that the metal or chelant or both can be separately recovered. Hydrogen ion at low pH displaces copper, eg, which is recovered from the acid bath by electrolysis while the hydrogen form of the chelant is recycled (43). Precipitation of the displaced metal by anions such as oxalate as the pH is lowered (Fig. 4) is utilized in separations of rare earths. Metals can also be displaced as insoluble salts or hydroxides in high pH domains where the pM that can be maintained by the chelate is less than that allowed by the insoluble species (Fig. 3). [Pg.393]

Ionic Equilibria.. The ion product constant of D2O (see Table 3) is an order of magnitude less than the value for H2O (24,31,32). The relationship pD = pH + 0.41 (molar scale 0.45 molal scale) for pD ia the range 2—9 as measured by a glass electrode standardized ia H2O has been established (33). For many phenomena strongly dependent on hydrogen ion activity, as is the case ia many biological contexts, the difference between pH and pD may have a large effect on the iaterpretation of experiments. [Pg.5]

Internal and External Phases. When dyeing hydrated fibers, for example, hydrophUic fibers in aqueous dyebaths, two distinct solvent phases exist, the external and the internal. The external solvent phase consists of the mobile molecules that are in the external dyebath so far away from the fiber that they are not influenced by it. The internal phase comprises the water that is within the fiber infrastmcture in a bound or static state and is an integral part of the internal stmcture in terms of defining the physical chemistry and thermodynamics of the system. Thus dye molecules have different chemical potentials when in the internal solvent phase than when in the external phase. Further, the effects of hydrogen ions (H" ) or hydroxyl ions (OH ) have a different impact. In the external phase acids or bases are completely dissociated and give an external or dyebath pH. In the internal phase these ions can interact with the fiber polymer chain and cause ionization of functional groups. This results in the pH of the internal phase being different from the external phase and the theoretical concept of internal pH (6). [Pg.351]

The esterification reaction may be carried out with a number of different anhydrides but the literature indicates that acetic anhydride is preferred. The reaction is catalysed by amines and the soluble salts of the alkali metals. The presence of free acid has an adverse effect on the esterification reaction, the presence of hydrogen ions causing depolymerisation by an unzipping mechanism. Reaction temperatures may be in the range of 130-200°C. Sodium acetate is a particularly effective catalyst. Esterification at 139°C, the boiling point of acetic anhydride, in the presence of 0.01% sodium acetate (based on the anhydride) is substantially complete within 5 minutes. In the absence of such a catalyst the percentage esterification is of the order of only 35% after 15 minutes. [Pg.534]

Bell has calculated Hq values with fair accuracy by assuming that the increase in acidity in strongly acid solutions is due to hydration of hydrogen ions and that the hydration number is 4. The addition of neutral salts to acid solutions produces a marked increase in acidity, and this too is probably a hydration effect in the main. Critchfield and Johnson have made use of this salt effect to titrate very weak bases in concentrated aqueous salt solutions. The addition of DMSO to aqueous solutions of strong bases increases the alkalinity of the solutions. [Pg.450]

For the phosphoric anhydrides, and for most of the high-energy compounds discussed here, there is an additional entropic contribution to the free energy of hydrolysis. Most of the hydrolysis reactions of Table 3.3 result in an increase in the number of molecules in solution. As shown in Figure 3.11, the hydrolysis of ATP (as pH values above 7) creates three species—ADP, inorganic phosphate (Pi), and a hydrogen ion—from only two reactants (ATP and HgO). The entropy of the solution increases because the more particles, the more disordered the system. (This effect is ionization-dependent because, at low pH, the... [Pg.74]


See other pages where Hydrogen Ions effect is mentioned: [Pg.496]    [Pg.271]    [Pg.502]    [Pg.126]    [Pg.482]    [Pg.67]    [Pg.2323]    [Pg.63]    [Pg.156]    [Pg.496]    [Pg.271]    [Pg.502]    [Pg.126]    [Pg.482]    [Pg.67]    [Pg.2323]    [Pg.63]    [Pg.156]    [Pg.152]    [Pg.478]    [Pg.2931]    [Pg.77]    [Pg.567]    [Pg.81]    [Pg.464]    [Pg.465]    [Pg.339]    [Pg.454]    [Pg.199]    [Pg.199]    [Pg.199]    [Pg.387]    [Pg.387]    [Pg.390]    [Pg.391]    [Pg.210]    [Pg.375]    [Pg.55]    [Pg.225]    [Pg.596]    [Pg.819]    [Pg.294]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



Effect of Hydrogen Ion on Cation-Exchange Processes

Hydrogen-ion concentration, effect

© 2024 chempedia.info