Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen chloride mixtures

An unusual reaction leading to the formation of 4-thioxopyrazolo[3,4-d]-pyrimidines has been reported. 1-Substituted 4-cyano-5-aminopyrazoles (103, R = H) react with phenyl isothiocyanate in dimethylformamide (DMF) saturated with hydrogen chloride to yield 1-substituted 4(5//)-pyrazolo[3,4-d]-pyrimidinethione (110). A proposed reaction sequence involved an initial nucleophilic addition of phenyl isothiocyanate to the protonated o-amino-nitrile to give an o-aminothioamide (108), followed by formylation by the dimethylformamide-hydrogen chloride mixture affording 109, which then cyclizes to the final product 110 (70MI1). [Pg.336]

After the reaction is complete, the furnace is cooled to room temperature and a current of dry carbon dioxide or dry nitrogen is substituted for the hydrogen-hydrogen chloride mixture. The delivery tube is pulled through the rubber stopper until the end passes the constriction C at which the apparatus is then sealed. [Pg.152]

The synergic action of three types of mixtures of polyvinyl chloride stabilizers mixtures of two decelerators of thermal dehydrochlorination that do not bond hydrogen chloride, mixtures of two stabilizers that are hydrogen chloride acceptors, and mixtures of hydrogen chloride acceptors with decelerators of dehydrochlorination, possessing no acceptor properties, was investigated in [54, 73, 86]. [Pg.187]

By oxidation with permanganate it forms pinonic acid, C,oH,<503, a monobasic acid derived from cyclobutane. With strong sulphuric acid it forms a mixture of limonene, dipentene, terpinolene, terpinene, camphene and p-cymene. Hydrogen chloride reacts with turpentine oil to give CioHijCl, bomyl chloride, artificial camphor . [Pg.315]

By the oxidation of hydrogen chloride. A mixture of hydrogen chloride with air or oxygen is passed over a catalyst of copper(II)... [Pg.317]

Properties—Hydrogen iodide is a colourless gas. It is very soluble in water and fumes in moist air (cf. hydrogen chloride), to give hydriodic acid. Its solution forms a constant boiling mixture (cf. hydrochloric and hydrobromic acids). Because it attacks mercury so readily, hydrogen iodide is difficult to study as a gas, but the dissociation equilibrium has been investigated. [Pg.333]

During this period hydrogen chloride continues to be liberally evolved, and the product darkens considerably in colour. Now pour the product cautiously into 500 ml. of dilute hydrochloric acid and 100 g. of chipped ice in a separating-funnel, and shake the mixture thoroughly this operation removes the dark colour, and the toluene solution becomes yellow. Run off the lower acid layer, and extract the toluene three times with water. Finally dry the toluene solution over calcium chloride. [Pg.290]

Place 0 -5 g. of 3 4 5 triiodobenzoyl chloride in a small test-tube, add 0 -25 ml. of the alcohol - ether and heat the mixture gently over a micro burner until the evolution of hydrogen chloride ceases (3-5 minutes). Pour the molten mass into 10 ml. of 20 per cent, alcohol to which crushed ice has been added. Some derivatives solidify instantly those which separate as oils change to solids in a few minutes without further manipulation. Recrystallise from rectified spirit (use 50 per cent, alcohol for esters of methyl and butyl carbitol ). [Pg.265]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

Fit up the apparatus shown in Fig. Ill, 31, 1 the capacity of the Claisen flask should be 100 ml. Place 40 g. (24-6 ml.) of redistilled thionyl chloride in the flask and 60 g. (62 ml.) of dry n-butyl alcohol (b.p. 116-117°) in the dropping funnel. Cool the flask in ice and add the n-butyl alcohol, with frequent shaking, over 1 hour (1). Reflux the mixture gently for 1 hour to complete the reaction and to remove the residual hydrogen chloride. Arrange the apparatus for distillation, and distil under normal pressure until the temperature rises to 120° then distil under diminished pressure (Fig. 11, 20, 1) and collect the di-n-butyl sulphite at 116-118°/20 mm. The yield is 66 g. [Pg.303]

Into a 500 ml. three-necked flask, provided with a mechanical stirrer, a gas inlet tube and a reflux condenser, place 57 g. of anhydrous stannous chloride (Section 11,50,11) and 200 ml. of anhydrous ether. Pass in dry hydrogen chloride gas (Section 11,48,1) until the mixture is saturated and separates into two layers the lower viscous layer consists of stannous chloride dissolved in ethereal hydrogen chloride. Set the stirrer in motion and add 19 5 g. of n-amyl cyanide (Sections III,112 and III,113) through the separatory funnel. Separation of the crystalline aldimine hydrochloride commences after a few minutes continue the stirring for 15 minutes. Filter oflF the crystalline solid, suspend it in about 50 ml. of water and heat under reflux until it is completely hydrolysed. Allow to cool and extract with ether dry the ethereal extract with anhydrous magnesium or calcium sulphate and remove the ether slowly (Fig. II, 13, 4, but with the distilling flask replaced by a Claisen flask with fractionating side arm). Finally, distil the residue and collect the n-hexaldehyde at 127-129°. The yield is 19 g. [Pg.324]

Dissolve 2 ml. of acetaldehyde in 5 ml. of dry ether, cool in a freezing mixture of ice and salt, and pass in dry hydrogen chloride gas for 30-60 seconds. The solid polymer, metaldehyde, may separate in a short time, otherwise cork the tube and allow it to stand for 10-15 minutes. Filter ofiF the crystals. [Pg.331]

Mix 0-2 g. of 3 5-dinitrobenzoyl chloride, 6 drops of the mercaptan and 1-3 drops of pyridine in a test-tube, and heat the mixture in a beaker of boiling water until fumes of hydrogen chloride cease to appear (15-30 minutes). Add a few drops of water, followed by a drop or two of pyridine to eliminate the excess of the reagent. The product sohdifies upon stirring with a glass rod. Add water, filter, and recrystalUse from dilute alcohol or dilute acetic acid. [Pg.501]

In an alternative procedure 26 g. of anhydrous ferric chloride replace the aluniiniuni chloride, the mixture is cooled to 10°, and the 50 g. of tert.-butyl chloride is added. The mixture is slowly warmed to 25° and maintained at this temperature until no more hydrogen chloride is evolved. The reaction mixture is then washed with dilute hydrochloric acid and with water, dried and fractionally distilled. The yield of tert.-butyl benzene, b.p. 167- 170°, is 60 g. [Pg.513]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

Place a mixture of 1 0 g. of the hydrocarbon, 10 ml. of dry methylene chloride or ethylene dichloride or syw.-tetrachloroethane, 2 5 g. of powdered anhydrous aluminium chloride and 1-2 g. of pure phthalic anhydride in a 50 ml. round-bottomed flask fitted with a short reflux condenser. Heat on a water bath for 30 minutes (or until no more hydrogen chloride fumes are evolved), and then cool in ice. Add 10 ml. of concentrated hydrochloric acid cautiously and shake the flask gently for 5 min utes. Filter oflf the solid at the pump and wash it with 10-15 ml. of cold water. Boil the resulting crude aroylbenzoic acid with 10 ml. of 2 -5N sodium carbonate solution and 0 2 g. of decolourising carbon for 5 minutes, and filter the hot solution. Cool, add about 10 g. of crushed ice and acidify... [Pg.519]


See other pages where Hydrogen chloride mixtures is mentioned: [Pg.125]    [Pg.28]    [Pg.114]    [Pg.70]    [Pg.125]    [Pg.611]    [Pg.153]    [Pg.125]    [Pg.28]    [Pg.114]    [Pg.70]    [Pg.125]    [Pg.611]    [Pg.153]    [Pg.94]    [Pg.165]    [Pg.208]    [Pg.51]    [Pg.331]    [Pg.96]    [Pg.105]    [Pg.143]    [Pg.256]    [Pg.257]    [Pg.259]    [Pg.290]    [Pg.310]    [Pg.311]    [Pg.182]    [Pg.183]    [Pg.238]    [Pg.319]    [Pg.368]    [Pg.369]    [Pg.375]    [Pg.379]    [Pg.431]    [Pg.434]    [Pg.485]    [Pg.513]    [Pg.514]    [Pg.515]   
See also in sourсe #XX -- [ Pg.687 ]




SEARCH



Chloride mixture

© 2024 chempedia.info