Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic hydrodesulfurization

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

Simple conventional refining is based essentially on atmospheric distillation. The residue from the distillation constitutes heavy fuel, the quantity and qualities of which are mainly determined by the crude feedstock available without many ways to improve it. Manufacture of products like asphalt and lubricant bases requires supplementary operations, in particular separation operations and is possible only with a relatively narrow selection of crudes (crudes for lube oils, crudes for asphalts). The distillates are not normally directly usable processing must be done to improve them, either mild treatment such as hydrodesulfurization of middle distillates at low pressure, or deep treatment usually with partial conversion such as catalytic reforming. The conventional refinery thereby has rather limited flexibility and makes products the quality of which is closely linked to the nature of the crude oil used. [Pg.484]

The primary determinant of catalyst surface area is the support surface area, except in the case of certain catalysts where extremely fine dispersions of active material are obtained. As a rule, catalysts intended for catalytic conversions utilizing hydrogen, eg, hydrogenation, hydrodesulfurization, and hydrodenitrogenation, can utilize high surface area supports, whereas those intended for selective oxidation, eg, olefin epoxidation, require low surface area supports to avoid troublesome side reactions. [Pg.194]

Hydrodesulfurization. A commercial catalyst contains about 4 percent CoO and 12 percent M0O3 on y-alumina and is presulfided before use. Molybdena is a weak catalyst by itself and the cobalt has no catalytic action by itself. [Pg.2094]

The feed to a catalytic reformer is normally a heavy naphtha fraction produced from atmospheric distillation units. Naphtha from other sources such as those produced from cracking and delayed coking may also be used. Before using naphtha as feed for a catalytic reforming unit, it must be hydrotreated to saturate the olefins and to hydrodesulfurize... [Pg.61]

Research into cluster catalysis has been driven by both intrinsic interest and utilitarian potential. Catalysis involving "very mixed -metal clusters is of particular interest as many established heterogeneously catalyzed processes couple mid and late transition metals (e.g., hydrodesulfurization and petroleum reforming). Attempts to model catalytic transformations arc summarized in Section II.F.I., while the use of "very mixed -metal clusters as homogeneous and heterogeneous catalysis precursors are discussed in Sections I1.F.2. and I1.F.3., respectively. The general area of mixed-metal cluster catalysis has been summarized in excellent reviews by Braunstein and Rose while the tabulated results are intended to be comprehensive in scope, the discussion below focuses on the more recent results. [Pg.106]

Sulfided bimetallic clusters which mimic the metal composition of commercial hydrodesulfurization (HDS) catalysts have been prepared and their homogeneous catalytic behavior studied. Reaction of thiophenol with [Mo2Co2(/z4-S)... [Pg.109]

This paper describes the catalytic activity of nickel phosphide supported on silica, alumina, and carbon-coated alumina in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. The catalysts are made by the reduction of phosphate precursors. On the silica support the phosphate is reduced easily to form nickel phosphide with hi catalytic activity, but on the alumina support interactions between the phosphate and the alumina hinder the reduction. The addition of a carbon overlayer on alumina decreases the interactions and leads to the formation of an active phosphide phase. [Pg.357]

Here we illustrate how to use kinetic data to establish a power rate law, and how to derive rate constants, equilibrium constants of adsorption and even heats of adsorption when a kinetic model is available. We use the catalytic hydrodesulfurization of thiophene over a sulfidic nickel-promoted M0S2 catalyst as an example ... [Pg.288]

Figure 9.6. Schematic representation of the catalytic cycle for the hydrodesulfurization of a sulfur-containing hydrocarbon (ethane thiol) by a sulfur vacancy on M0S2 The C2H5SH molecule adsorbs with its sulfur atom towards... Figure 9.6. Schematic representation of the catalytic cycle for the hydrodesulfurization of a sulfur-containing hydrocarbon (ethane thiol) by a sulfur vacancy on M0S2 The C2H5SH molecule adsorbs with its sulfur atom towards...
Today s society asks for technology that has a minimum impact on the environment. Ideally, chemical processes should be clean in that harmful byproducts or waste are avoided. Moreover, the products, e.g. fuels, should not generate environmental problems when they are used. The hydrogen fuel cell (Chapter 8) and the hydrodesulfurization process (Chapter 9) are good examples of such technologies where catalysts play an essential role. However, harmful emissions cannot always be avoided, e.g. in power generation and automotive traffic, and here catalytic clean-up technology helps to abate environmental pollution. This is the subject of this chapter. [Pg.377]

Hydrodesulfurization (HDS) is a very important large-scale process used in refineries to remove sulfur from oil products. It is actually one of the largest catalytic processes. As a model system for this process we shall consider the HDS of thio-... [Pg.419]

The studies of ammonia synthesis over Fe and Re and the hydrodesulfurization of thiophene over Mo, described above, illustrate the importance and success of our approach of studying catalysis over single crystal samples at high pressures. The use of surfaces having a variety of orientations allows the study of reactions that are surface structure sensitive 6Uid provides insight into the nature of the catalytic site. Here we have shown that the ammonia synthesis... [Pg.162]

Perez De la Rosa, M., Trader, S. Berhault, G., et al., Structural studies of catalytically stabilized model and industrial-supported hydrodesulfurization catalysts. J. Catal., 2004. 225 pp. 288-299. [Pg.58]

Hatanaka, S. Yamada, M., and Sadakane, O., Hydrodesulfurization of Catalytic Cracked Gasoline. 2. The Difference Between HDS Active Site and Olefin Hydrogenation Active Site. Ind. Eng. Chem. Res, 1997. 36 p. 1510. [Pg.58]


See other pages where Catalytic hydrodesulfurization is mentioned: [Pg.417]    [Pg.116]    [Pg.51]    [Pg.51]    [Pg.59]    [Pg.71]    [Pg.297]    [Pg.104]    [Pg.417]    [Pg.116]    [Pg.51]    [Pg.51]    [Pg.59]    [Pg.71]    [Pg.297]    [Pg.104]    [Pg.517]    [Pg.518]    [Pg.525]    [Pg.526]    [Pg.135]    [Pg.497]    [Pg.329]    [Pg.39]    [Pg.69]    [Pg.1005]    [Pg.412]    [Pg.146]    [Pg.195]    [Pg.357]    [Pg.357]    [Pg.17]    [Pg.155]    [Pg.503]    [Pg.38]    [Pg.123]    [Pg.615]    [Pg.263]   
See also in sourсe #XX -- [ Pg.384 ]




SEARCH



Catalytic cycle hydrodesulfurization

Catalytic reactions hydrodesulfurization

Homogeneous Catalytic Hydrogenolysis and Hydrodesulfurization of Thiophenes

Hydrodesulfuration

Hydrodesulfurization

Hydrodesulfurization catalytic mechanism

Hydrodesulfurization homogeneous catalytic

Hydrodesulfurizer

Thiophenes catalytic hydrodesulfurization

© 2024 chempedia.info