Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons, hydrocarbon ketones, oxidation

Ketones oxidize about as readily as the parent hydrocarbons or even a bit faster (32). Although the reactivities of hydrogens on carbons adjacent to carbonyl groups are perhaps doubled, the effect is small because one methylene group is missing in comparison to the parent hydrocarbon. Ketones oxidize less readily than similar primary or secondary alcohols (35). [Pg.336]

Eigure 2 shows that even materials which are rather resistant to oxidation ( 2/ 1 0.1) are consumed to a noticeable degree at high conversions. Also the use of plug-flow or batch reactors can offer a measurable improvement in efficiencies in comparison with back-mixed reactors. Intermediates that cooxidize about as readily as the feed hydrocarbon (eg, ketones with similar stmcture) can be produced in perhaps reasonable efficiencies but, except at very low conversions, are subject to considerable loss through oxidation. They may be suitable coproducts if they are also precursors to more oxidation-resistant desirable materials. Intermediates which oxidize relatively rapidly (/ 2 / i — 3-50 eg, alcohols and aldehydes) are difficult to produce in appreciable amounts, even in batch or plug-flow reactors. Indeed, for = 50, to isolate 90% or more of the intermediate made, the conversion must... [Pg.337]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

In the petroleum (qv) industry hydrogen bromide can serve as an alkylation catalyst. It is claimed as a catalyst in the controlled oxidation of aHphatic and ahcycHc hydrocarbons to ketones, acids, and peroxides (7,8). AppHcations of HBr with NH Br (9) or with H2S and HCl (10) as promoters for the dehydrogenation of butene to butadiene have been described, and either HBr or HCl can be used in the vapor-phase ortho methylation of phenol with methanol over alumina (11). Various patents dealing with catalytic activity of HCl also cover the use of HBr. An important reaction of HBr in organic syntheses is the replacement of aHphatic chlorine by bromine in the presence of an aluminum catalyst (12). Small quantities of hydrobromic acid are employed in analytical chemistry. [Pg.291]

Polypropylene has a chemical resistance about the same as that of polyethylene, but it can be used at 120°C (250°F). Polycarbonate is a relatively high-temperature plastic. It can be used up to 150°C (300°F). Resistance to mineral acids is good. Strong alkalies slowly decompose it, but mild alkalies do not. It is partially soluble in aromatic solvents and soluble in chlorinated hydrocarbons. Polyphenylene oxide has good resistance to ahphatic solvents, acids, and bases but poor resistance to esters, ketones, and aromatic or chlorinated solvents. [Pg.2458]

Naphthalic anhydride has been prepared by the hydrolysis of the dinitrile of ,2-naphthaIic acid,1 by the oxidation of suitably substituted hydrocarbons or ketones,2 or by the dehydrogenation of the 3,4-dihydro compound with bromine 3 or with sulfur.4... [Pg.60]

Pyrolyses of formates, oxalates and mellitates yield CO and C02 (H2, H20 etc.) as the predominant volatile products and metal or oxide as residue. It is sometimes possible to predict the initial compositions from thermodynamic considerations [94], though secondary reactions, perhaps catalyzed by the solids present, may result in a final product mixture that is very different. The complex mixtures of products (hydrocarbons, aldehydes, ketones, acids and acid anhydrides) given [1109] by reactants containing larger organic groupings makes the collection of meaningful kinetic data more difficult, and this is one reason why there are relatively few rate studies available for the decompositions of these substances. [Pg.229]

Intramolecular Friedel-Crafts acylation of diaryl ketones Oxidation of phenols or aromatic amines Oxidation of aromatic hydrocarbons... [Pg.1686]

CL accompanies many reactions of the liquid-phase oxidation of hydrocarbons, ketones, and other compounds. It was discovered in 1959 for liquid-phase ethylbenzene oxidation [219,220]. This phenomenon was intensively studied in the 1960s and 1970s, providing foundation for several methods of study of oxidation, decay of initiators, and kinetics of antioxidant action [12,17,221], Later this technique was effectively used to study the mechanism of solid polymer oxidation (see Chapter 13). [Pg.96]

Ketones, like hydrocarbons and other organic compounds, are oxidized by dioxygen via the chain mechanism [4,62]. The carbonyl group weakens the adjacent C—H bond. Therefore, a peroxyl radical attacks the a-C—H bond as this bond is the most reactive in a ketone. The pecularities of ketone oxidation are the same as aldehyde oxidation. [Pg.338]

Aryl and alkyl hydroxylations, epoxide formation, oxidative dealkylation of heteroatoms, reduction, dehalogenation, desulfuration, deamination, aryl N-oxygenation, oxidation of sulfur Oxidation of nucleophilic nitrogen and sulfur, oxidative desulfurization Oxidation of aromatic hydrocarbons, phenols, amines, and sulfides oxidative dealkylation, reduction of N-oxides Alcohol oxidation reduction of ketones Oxidative deamination... [Pg.343]

By indirect oxidation with electrogenerated NO3 radicals in f-butanol/ water/HN03/02, saturated hydrocarbons were oxidized to ketones with a statistical H-abstraction at the methylene... [Pg.133]

Suitable grades are usable in contact with food and are used for food packaging. Chemical resistance is generally good but polymethylpentenes are attacked by oxidizing acids, chlorinated solvents, certain oxidants and aromatic hydrocarbons. Resistance to aliphatic hydrocarbons, ketones, gasoline and kerosene is limited. [Pg.271]

The chemical resistance is generally inferior to that of comparable polyethylenes and decreases when VA rises. EVAs are attacked by concentrated strong acids, halogens, oxidizing acids, chlorinated solvents, certain oxidants, aliphatic and aromatic hydrocarbons, alcohols, ketones, esters, and some others. [Pg.286]

PMMAs are attacked by strong acids, strong and concentrated bases, esters, ethers, ketones, aldehydes, aromatic and halogenated hydrocarbons, certain alcohols, oxidizing agents, and phenols. [Pg.431]

Aliphatic ketones are oxidised in both acetonitrile [1,2] and trifluoracetic acid [3] at potentials less positive than required for the analogous hydrocarbons. The oxidation process is irreversible in both solvents and cyclic voltammetry peak potentials are around 2.7 V V5. see. Loss of an electron from the carbonyl oxygen lone pair is considered to be the first stage in the reaction. In acetonitrile, two competing processes then ensue. Short chain, a-branched ketones cleave the carbon-carbonyl bond to give the more stable carbocation, which is then quenched by reaction with... [Pg.300]

Among other substances studied for their resemblance to hydrocarbons in their oxidation behavior are the aliphatic amines (14) and methyl ethyl ketone (4). In the former, formaldehyde shortens the induction period, while in the latter, it has little effect. [Pg.63]

The monoterpenes are subdivided into three groups acyclic, monocyclic and bicyclic (there is only one tricyclic terpene tricyclene). Each group contains hydrocarbon terpenes, terpene alcohols, terpene aldehydes, ketones, oxides etc... [Pg.130]

NR = nonreactive toward hydrocarbons PO = oxidation of phosphines to phosphine oxides MF — peroxometallacyclic adduct formation with cyanoalkenes NSE — nonstereoselective epoxidation SE=stereoselective epoxidation AE = asymmetric epoxidation HA- hydroxylation of alkanes HB=hydroxylation of arenes OA = oxidation of alcohols to carbonyl compounds K = ketonization of Lermina 1 alkenes SO oxidation of S02 to coordinated S04 MO = metallaozonide formation with carbonyl compounds I = oxidation of isocyanides to isocyanates. [Pg.329]

Saturated hydrocarbons are homolytically oxidized by complexes (205) into alcohols, ketones and t-butyl peroxide products. The hydroxylation reaction occurs at the more nucleophilic C—H... [Pg.397]

The basic typical difference is that at organic peroxide dissociation (e.g. di-/m-bu(yl peroxide, scheme (1.7)) a complex set of final products—alcohols, ketones, oxides, methane and other hydrocarbons—is formed, whereas from hydrogen peroxide only H20 and 02 are formed. [Pg.10]


See other pages where Hydrocarbons, hydrocarbon ketones, oxidation is mentioned: [Pg.37]    [Pg.347]    [Pg.102]    [Pg.648]    [Pg.743]    [Pg.225]    [Pg.38]    [Pg.348]    [Pg.438]    [Pg.333]    [Pg.350]    [Pg.405]    [Pg.537]    [Pg.171]    [Pg.309]    [Pg.77]    [Pg.195]    [Pg.190]    [Pg.103]   
See also in sourсe #XX -- [ Pg.31 , Pg.230 ]

See also in sourсe #XX -- [ Pg.26 , Pg.27 , Pg.28 , Pg.134 , Pg.136 , Pg.162 , Pg.165 , Pg.177 , Pg.188 ]

See also in sourсe #XX -- [ Pg.29 , Pg.179 ]

See also in sourсe #XX -- [ Pg.26 , Pg.27 , Pg.162 , Pg.165 , Pg.177 , Pg.188 ]




SEARCH



Hydrocarbons => ketones

Hydrocarbons, hydrocarbon ketones

Ketones oxidant

Ketones oxidation

Oxidative ketones

Oxidative ketonization

© 2024 chempedia.info