Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons double bonds

In a similar process to halofluorination, sulphur- [285], selenium- [286] and nitrogen-containing [43] groups and fluorine may be added to hydrocarbon double bonds by reaction of an alkene with an electrophilic reagent of the heteroatom species in conjunction with a fluoride-ion source (Figure 3.66). As expected, Markovnikov addition in trans stereochemistry occurs mainly. [Pg.82]

Silanes and germanes are less stable than hydrocarbons. Double bonds involving Si and Ge are very much weaker than with C. [Pg.194]

CH = CH — CH = CH — are said to have conjugated double bonds and react somewhat differently from the other diolefins. For instance, bromine or hydrogen is often added so that a product of the type -CHBr-CH=CH-CHBr- is formed. Also, these hydrocarbons participate in the Diels-Alder reaction see diene reactions). They show a tendency to form rubber-like polymers. Hydrocarbons not falling into these two classes are said to have isolated double... [Pg.142]

Open chain hydrocarbons which are undersaturated, i.e. having at least one carbon-carbon double bond are part of the olefin series, and have the ending -ene . Those with one carbon-carbon double bond are called mono-olefins or alkenes, for example ethylene CH2 = CH2. [Pg.91]

It has been known for more than a century that hydrocarbons containing double bonds are more reactive than their counterparts that do not contain double bonds. Alkenes are, in general, more reactive than alkanes. We call electrons in double bonds 71 electrons and those in the much less reactive C—C or CH bonds Huckel theory, we assume that the chemistry of unsaturated hydrocarbons is so dominated by the chemistry of their double bonds that we may separate the Schroedinger equation yet again, into an equation for potential energy. We now have an equation of the same fomi as Eq. (6-8), but one in which the Hamiltonian for all elections is replaced by the Hamiltonian for Ji electrons only... [Pg.176]

Carbon can also form multiple bonds with other carbon atoms. This results in unsaturated hydrocarbons such as olefins (alkenes), containing a carbon-carbon double bond, or acetylenes (alkynes), containing a carbon-carbon triple bond. Dienes and polyenes contain two or more unsaturated bonds. [Pg.127]

Finally in our treatment of one group disconnections we ought to consider how to synhiesise Mly saturated hydrocarbons - compormds witli no FG at all These are often made by hydrogenation of a double bond, and so the discoimection can be made anywhere we like ... [Pg.22]

Saturated hydrocarbons were a problem because they have no functionality. It can be just as bad when a molecule has several functional groups aU apparently unrelated. Bisabolene (TM 384) has three double bonds, aU rather widely separated. Comment on possible strategies in terms of the hkely origin of each double bond and the probable order of events. [Pg.122]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Aliphatic hydrocarbons include three major groups alkanes alkenes and alkynes Alkanes are hydrocarbons m which all the bonds are single bonds alkenes contain at least one carbon-carbon double bond and alkynes contain at least one carbon-carbon... [Pg.57]

Exclusive of compounds with double bonds four hydrocarbons are constitutional isomers of cis and trans 1 2 dimethylcyclopropane Identify these compounds... [Pg.124]

Alkenes are hydrocarbons that contain a carbon-carbon double bond A carbon-carbon double bond is both an important structural unit and an important func tional group m organic chemistry The shape of an organic molecule is influenced by the presence of this bond and the double bond is the site of most of the chemical reactions that alkenes undergo Some representative alkenes include isobutylene (an industrial chemical) a pmene (a fragrant liquid obtained from pine trees) md fame sene (a naturally occurring alkene with three double bonds)... [Pg.187]

Hydrocarbons that contain a carbon-carbon triple bond are called alkynes Non cyclic alkynes have the molecular formula C H2 -2 Acetylene (HC=CH) is the simplest alkyne We call compounds that have their triple bond at the end of a carbon chain (RC=CH) monosubstituted or terminal alkynes Disubstituted alkynes (RC=CR ) have internal triple bonds You will see m this chapter that a carbon-carbon triple bond is a functional group reacting with many of the same reagents that react with the double bonds of alkenes... [Pg.363]

A hydrocarbon that contains two double bonds is called an alkadiene, and the rela tionship between the double bonds may be described as isolated conjugated or cumu lated Isolated diene units are those m which two carbon-carbon double bond units are separated from each other by one or more sp hybridized carbon atoms 1 4 Pentadiene and 1 5 cyclooctadiene have isolated double bonds... [Pg.398]

What about a substance wrth the molecular formula 71414 Thrs compound can not be an alkane but may be erther a cycloalkane or an alkene because both these classes of hydrocarbons correspond to the general molecular formula C H2 Any time a ring or a double bond is present in an organic molecule its molecular formula has two fewer hydrogen atoms than that of an alkane with the same number of carbons... [Pg.574]

Alkadiene (Section 10 5) Hydrocarbon that contains two carbon-carbon double bonds commonly referred to as a diene... [Pg.1275]

Alkane (Section 2 1) Hydrocarbon in which all the bonds are single bonds Alkanes have the general formula C H2 +2 Alkene (Section 2 1) Hydrocarbon that contains a carbon-car bon double bond (C=C) also known by the older name olefin... [Pg.1275]

Cycloalkene (Section 5 1) A cyclic hydrocarbon characterized by a double bond between two of the nng carbons Cycloalkyne (Section 9 4) A cyclic hydrocarbon characterized by a tnple bond between two of the nng carbons Cyclohexadienyl anion (Section 23 6) The key intermediate in nucleophilic aromatic substitution by the addition-elimination mechanism It is represented by the general structure shown where Y is the nucleophile and X is the leaving group... [Pg.1280]

Unsaturated branched acyclic hydrocarbons are named as derivatives of the chain that contains the maximum number of double and/or triple bonds. When a choice exists, priority goes in sequence to (1) the chain with the greatest number of carbon atoms and (2) the chain containing the maximum number of double bonds. [Pg.4]

Names of polycyclic hydrocarbons with less than the maximum number of noncumulative double bonds are formed from a prefix dihydro-, tetrahydro-, etc., followed by the name of the corresponding unreduced hydrocarbon. The prefix perhydro- signifies full hydrogenation. For example, 1,2-dihy-dronaphthalene is... [Pg.7]

Proton chemical shift data from nuclear magnetic resonance has historically not been very informative because the methylene groups in the hydrocarbon chain are not easily differentiated. However, this can be turned to advantage if a polar group is present on the side chain causing the shift of adjacent hydrogens downfteld. High resolution C-nmr has been able to determine position and stereochemistry of double bonds in the fatty acid chain (62). Broad band nmr has also been shown useful for determination of soHd fat content. [Pg.132]

Steric Factors. Initially, most of the coUisions of fluorine molecules with saturated or aromatic hydrocarbons occur at a hydrogen site or at a TT-bond (unsaturated) site. When coUision occurs at the TT-bond, the double bond disappears but the single bond remains because the energy released in initiation (eq. 4) is insufficient to fracture the carbon—carbon single bond. Once carbon—fluorine bonds have begun to form on the carbon skeleton of either an unsaturated or alkane system, the carbon skeleton is somewhat stericaUy protected by the sheath of fluorine atoms. Figure 2, which shows the crowded hehcal arrangement of fluorine around the carbon backbone of polytetrafluoroethylene (PTFE), is an example of an extreme case of steric protection of carbon—carbon bonds (29). [Pg.275]

Other nonpolymeric radical-initiated processes include oxidation, autoxidation of hydrocarbons, chlorination, bromination, and other additions to double bonds. The same types of initiators are generally used for initiating polymerization and nonpolymerization reactions. Radical reactions are extensively discussed in the chemical Hterature (3—15). [Pg.220]

Cyclodienes. These are polychlorinated cycHc hydrocarbons with endomethylene-bridged stmctures, prepared by the Diels-Alder diene reaction. The development of these insecticides resulted from the discovery in 1945 of chlordane, the chlorinated adduct of hexachlorocyclopentadiene and cyclopentadiene (qv). The addition of two Cl atoms across the double bond of the ftve-membered ring forms the two isomers of chlordane [12789-03-6] or l,2,4,5,6,7,8,8-octachloro-2,3,3t ,4,7,7t -hexahydro-4,7-methano-lJT-indene, QL-trans (mp 106.5°C) and pt-tis (32) (mp 104.5°C). The p-isomerhas signiftcantiy greater insecticidal activity. Technical chlordane is an amber Hquid (bp 175°C/267 Pa, vp 1.3 mPa at 25°C) which is soluble in water to about 9 fig/L. It has rat LD qS of 335, 430 (oral) and 840, 690 (dermal) mg/kg. Technical chlordane contains about 60% of the isomers and 10—20% of heptachlor. It has been used extensively as a soil insecticide for termite control and as a household insecticide. [Pg.277]

Chemical Properties and Reactivity. LLDPE is a saturated branched hydrocarbon. The most reactive parts of LLDPE molecules are the tertiary CH bonds in branches and the double bonds at chain ends. Although LLDPE is nonreactive with both inorganic and organic acids, it can form sulfo-compounds in concentrated solutions of H2SO4 (>70%) at elevated temperatures and can also be nitrated with concentrated HNO. LLDPE is also stable in alkaline and salt solutions. At room temperature, LLDPE resins are not soluble in any known solvent (except for those fractions with the highest branching contents) at temperatures above 80—100°C, however, the resins can be dissolved in various aromatic, aUphatic, and halogenated hydrocarbons such as xylenes, tetralin, decalin, and chlorobenzenes. [Pg.395]

Some of the most difficult heterophase systems to characterize are those based on hydrocarbon polymers such as mbber-toughened polypropylene or other blends of mbbers and polyolefins. Eecause of its selectivity, RuO staining has been found to be usehil in these cases (221,222,230). Also, OsO staining of the amorphous blend components has been reported after sorption of double-bond-containing molecules such as 1,7-octadiene (231) or styrene (232). In these cases, the solvent is preferentially sorbed into the amorphous phase, and the reaction with OsO renders contrast between the phases. [Pg.418]


See other pages where Hydrocarbons double bonds is mentioned: [Pg.857]    [Pg.2]    [Pg.121]    [Pg.94]    [Pg.857]    [Pg.2]    [Pg.121]    [Pg.94]    [Pg.21]    [Pg.121]    [Pg.142]    [Pg.208]    [Pg.1138]    [Pg.99]    [Pg.143]    [Pg.574]    [Pg.1276]    [Pg.6]    [Pg.124]    [Pg.204]    [Pg.275]    [Pg.283]    [Pg.556]    [Pg.466]    [Pg.379]    [Pg.379]    [Pg.430]    [Pg.108]    [Pg.181]   
See also in sourсe #XX -- [ Pg.469 , Pg.470 ]




SEARCH



Bonded Hydrocarbons

Hydrocarbons, hydrocarbon bonds

© 2024 chempedia.info