Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon oxidation acetylene

Good reviews on hydrocarbon oxidation acetylene polymerization, etc. [Pg.238]

Gesammelte Abhandlungen zur Kenntnis der Kohle (1915-30). This series contains good reviews on hydrocarbon oxidation, acetylene polymerization, etc. [Pg.142]

Special consideration is required for exterior columns and auxiliaries that may contain unstable compounds (e.g., peroxides, nitro compounds, hydrocarbon oxides, acetylenic compounds, etc.). Here an external fire may cause overheating and polymerization, which in turn can lead to a runaway reaction and a decomposition explosion. These reactions will be related to the fire. Five major ethylene oxide column explosions caused by this sequence of events are cited in Ref. 209a. At least one involved a fatality, and in several the column was destroyed with column fragments travelling a long distance. [Pg.242]

Burning a portion of a combustible reactant with a small additive of air or oxygen. Such oxidative pyrolysis of light hydrocarbons to acetylene is done in a special burner, at 0.001 to 0.01 s reaction time, peak at 1,400°C (2,552°F), followed by rapid quenching with oil or water. [Pg.2099]

When the column chemicals are thermally unstable and decompose exothermically, an excessive bottom temperature can cause a "runaway reaction and sometimes lead to an explosion. Some experiences with such explosions have been reported in distillation of peroxide, nitro, hydrocarbon oxide, and acetylenic compounds (16o, 96, 97, 209a, 275). [Pg.363]

The air-hydrogen flame is more transparent than hydrocarbon-based flames, and sometimes offers advantages in atomic absorption when working at short wavelengths. This flame has been demonstrated superior to the air-acetylene and nitrous oxide-acetylene flames for the determination of low concentrations of tin, for instance. [Pg.274]

Both turbulent burners and premix burners have been used for atomic fluorescence. The premix burner is usually round in shape (a modification of the Meker-type burner), since this provides better geometry for fluorescence than does a slot burner. For an optimum detection limit, the premix burner is also shielded that is, an inert gas such as argon or nitrogen is directed in a sheath around the flame. This elongates the interconal zone and lifts the secondary reaction zone above the burner, separating it from the lower part of the interconal zone where the excitation beam passes. The result is less background emission and less noise, particularly in hydrocarbon flames like air-acetylene or nitrous oxide-acetylene. The premix burner, especially when shielded, appears to offer increased sensitivity over the turbulent burner. [Pg.291]

The irradiation environment plays an important role in the evolution of polymer stability. While unsaturated hydrocarbon like acetylene [61] or divinyl benzene [62] is present in the material surrounding and provides radicals for the formation of intermolecular bridges, oxidative atmosphere, oxygen or air, promotes oxidation as the result of diffusion inside the polymer matrix. The distribution profile for carbonyl products that generated during irradiation takes a parabolic form [63]. The source of radicals may be one of the components of blends, which presents a lower stability. This case can be illustrated by various blends, EPDM/PP [64], EPDN-NR [65]. These polymer mixture show the maximum level of crosslinking at about 120-150 kGy. [Pg.129]

The electrochemical oxidation mechanism of a large group of unsaturated hydrocarbons (ethylene, acetylene, propylene, 1-butene, 2-butene, allene, butadiene, cyclohexadine, benzene) was investigated in detail by Bockris and co-workers [1, 15, 16,170, 191-196, 200]. The experimental results obtained in these papers can be formulated in the following way ... [Pg.354]

A few illustrative examples are the following. Photohydrogenation of acetylene and ethylene occurs on irradiation of Ti02 exposed to the gases, but only if TiOH surface groups are present as a source of hydrogen [319]. The pho-toinduced conversion of CO2 to CH4 in the presence of Ru and Os colloids has been reported [320]. Platinized Ti02 powder shows, in the presence of water, photochemical oxidation of hydrocarbons [321,322]. Some of the postulated reactions are ... [Pg.738]

Alkali metals Moisture, acetylene, metal halides, ammonium salts, oxygen and oxidizing agents, halogens, carbon tetrachloride, carbon, carbon dioxide, carbon disul-flde, chloroform, chlorinated hydrocarbons, ethylene oxide, boric acid, sulfur, tellurium... [Pg.1207]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

Several studies of spherical and cylindrical detonation in acetylene—oxygen and acetylene—air mixtures have been reported (82,83). The combustion and oxidation of acetylene are reviewed extensively in Reference 84. A study of the characteristics and destmctive effects of detonations in mixtures of acetylene (and other hydrocarbons) with air and oxygen-enriched air in earthen tuimels and large steel pipe is reported in Reference 81. [Pg.377]

Flame or Partial Combustion Processes. In the combustion or flame processes, the necessary energy is imparted to the feedstock by the partial combustion of the hydrocarbon feed (one-stage process), or by the combustion of residual gas, or any other suitable fuel, and subsequent injection of the cracking stock into the hot combustion gases (two-stage process). A detailed discussion of the kinetics for the pyrolysis of methane for the production of acetylene by partial oxidation, and some conclusions as to reaction mechanism have been given (12). [Pg.386]

Od-fumace blacks used by the mbber iadustry contain over 97% elemental carbon. Thermal and acetylene black consist of over 99% carbon. The ultimate analysis of mbber-grade blacks is shown ia Table 2. The elements other than carbon ia furnace black are hydrogen, oxygen, and sulfur, and there are mineral oxides and salts and traces of adsorbed hydrocarbons. The oxygen content is located on the surface of the aggregates as C O complexes. The... [Pg.542]

Tetracyanoethylene oxide [3189-43-3] (8), oxiranetetracarbonitnle, is the most notable member of the class of oxacyanocarbons (57). It is made by treating TCNE with hydrogen peroxide in acetonitrile. In reactions unprecedented for olefin oxides, it adds to olefins to form 2,2,5,5-tetracyanotetrahydrofuran [3041-31-4] in the case of ethylene, acetylenes, and aromatic hydrocarbons via cleavage of the ring C—C bond. The benzene adduct (9) is 3t ,7t -dihydro-l,l,3,3-phthalantetracarbonitrile [3041-36-9], C22HgN O. [Pg.405]

Many similar hydrocarbon duids such as kerosene and other paraffinic and naphthenic mineral oils and vegetable oils such as linseed oil [8001-26-17, com oil, soybean oil [8001-22-7] peanut oil, tall oil [8000-26-4] and castor oil are used as defoamers. Liquid fatty alcohols, acids and esters from other sources and poly(alkylene oxide) derivatives of oils such as ethoxylated rosin oil [68140-17-0] are also used. Organic phosphates (6), such as tributyl phosphate, are valuable defoamers and have particular utiHty in latex paint appHcations. Another important class of hydrocarbon-based defoamer is the acetylenic glycols (7), such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol which are widely used in water-based coatings, agricultural chemicals, and other areas where excellent wetting is needed. [Pg.463]

The nature of dangerous reactions involving organic chemicals depends on the saturated, unsaturated or aromatic structures of a particular compound. Saturated hydrocarbons are hardly reactive, especially when they are linear. Branched or cyclic hydrocarbons (especially polycyclic condensed ones) are more reactive, in particular as with oxidation reactions. With ethylenic or acetylenic unsaturated compounds, the products are endothermic . [Pg.235]

Chlorine dioxide Copper Fluorine Hydrazine Hydrocarbons (benzene, butane, propane, gasoline, turpentine, etc) Hydrocyanic acid Hydrofluoric acid, anhydrous (hydrogen fluoride) Hydrogen peroxide Ammonia, methane, phosphine or hydrogen sulphide Acetylene, hydrogen peroxide Isolate from everything Hydrogen peroxide, nitric acid, or any other oxidant Fluorine, chlorine, bromine, chromic acid, peroxide Nitric acid, alkalis Ammonia, aqueous or anhydrous Copper, chromium, iron, most metals or their salts, any flammable liquid, combustible materials, aniline, nitromethane... [Pg.165]


See other pages where Hydrocarbon oxidation acetylene is mentioned: [Pg.530]    [Pg.30]    [Pg.1012]    [Pg.53]    [Pg.586]    [Pg.435]    [Pg.332]    [Pg.528]    [Pg.58]    [Pg.342]    [Pg.86]    [Pg.400]    [Pg.493]    [Pg.95]    [Pg.459]    [Pg.2382]    [Pg.275]    [Pg.124]    [Pg.864]    [Pg.129]    [Pg.18]    [Pg.128]    [Pg.275]    [Pg.258]    [Pg.162]   
See also in sourсe #XX -- [ Pg.123 ]

See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Acetylene hydrocarbons

Acetylene oxidation

Acetylenic hydrocarbons

© 2024 chempedia.info