Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons hydride transfer

Field and Lampe (23) established the occurrence of the hydride transfer reaction in the gas phase in 1958 by detecting secondary ions of mass one unit lower than the parent compound. Subsequently, Futrell (24, 25) attempted to account for most lower hydrocarbon products formed in the radiolysis of hexane and pentane by assuming that hydride transfer reactions play a dominant role in radiolysis. More recently, Ausloos and Lias (2) presented experimental evidence which indicated that some of the products in the radiolysis of propane are, in... [Pg.271]

A low ion pair yield of products resulting from hydride transfer reactions is also noted when the additive molecules are unsaturated. Table I indicates, however, that hydride transfer reactions between alkyl ions and olefins do occur to some extent. The reduced yield can be accounted for by the occurrence of two additional reactions between alkyl ions and unsaturated hydrocarbon molecules—namely, proton transfer and condensation reactions, both of which will be discussed later. The total reaction rate of an ion with an olefin is much higher than reaction with a saturated molecule of comparable size. For example, the propyl ion reacts with cyclopentene and cyclohexene at rates which are, respectively, 3.05 and 3.07 times greater than the rate of hydride transfer with cyclobutane. This observation can probably be accounted for by a higher collision cross-section and /or a transmission coefficient for reaction which is close to unity. [Pg.274]

M is an unsaturated hydrocarbon or an organic compound such as CH3OH, CH3I, CH3N02, (CH3)2CO, CH3NH2, etc. When M is an olefin, Reaction 27 or 28 will compete with a hydride transfer process (see earlier discussion) and a condensation process. For instance, in the radiolysis of C3D8-CH3CHCH2 mixtures (9), the relative rates of Reactions 29, 30, 31, and 32... [Pg.280]

It is well known that strong electrophiles such as carbocations are reduced by organosilicon hydrides (Eq. 1).3,70,71 On the other hand, simple mixtures of organosilicon hydrides and compounds with weakly electrophilic carbon centers such as ketones and aldehydes are normally unreactive unless the electrophilicity of the carbon center is enhanced by complexation of the carbonyl oxygen with Brpnsted acids3,70 73 or certain Lewis acids (Eq. 2).1,70,71,74,75 Using these acids, hydride transfer from the silicon center to carbon may then occur to give either alcohol-related or hydrocarbon products. [Pg.9]

Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved. Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved.
The direct protonation of isobutane, via a pentacoordinated carbonium ion, is not likely under typical alkylation conditions. This reaction would give either a tertiary butyl cation (trimethylcarbenium ion) and hydrogen, or a secondary propyl cation (dimethylcarbenium ion) and methane (37-39). With zeolites, this reaction starts to be significant only at temperatures higher than 473 K. At lower temperatures, the reaction has to be initiated by an alkene (40). In general, all hydrocarbon transformations at low temperatures start with the adsorption of the much more reactive alkenes, and alkanes enter the reaction cycles exclusively through hydride transfer (see Section II.D). [Pg.260]

Only scant information is available about the influence of coke formation on the alkylation mechanism. It has been proposed that, similar to the conjunct polymers in liquid acids, heavy unsaturated molecules participate in hydride transfer reactions. However, no direct evidence was given for this proposition (69). In another study, the hydride transfer from unsaturated cyclic hydrocarbons was deduced from an initiation period in the activity of NaHY zeolites complete conversion of butene was achieved only after sufficient formation of such compounds (73). [Pg.267]

On the basis of these results we embarked on a systematic study on the synthesis of vinyl cations by intramolecular addition of transient silylium ions to C=C-triple bonds using alkynyl substituted disila alkanes 6 as precursors.(35-37) In a hydride transfer reaction with trityl cation the alkynes 6 are transformed into the reactive silylium ions 7. Under essentially nonHnucleophilic reaction conditions, i.e. in the presence of only weakly coordinating anions and using aromatic hydrocarbons as solvents, the preferred reaction channel for cations 7 is the intramolecular addition of the positively charged silicon atom to the C=C triple bond which results in the formation of vinyl cations 8-10 (Scheme 1). [Pg.66]

However, it is possible for the alkyl cation intermediate to rearrange before hydride transfer. In this case monomeric saturated hydrocarbons and rearranged monomeric cations are produced (equation 13). [Pg.330]

The next step in complexity are systems in which alkylation competes with hydride transfer to give dimeric alkyl cations which, when hydride abstraction occurs, yield dimeric saturated hydrocarbons (equation 14). This reaction path for cyclic aliphatic alcohols and olefins is often accompanied by some rearrangement (Deno etal., 1964 Pittman, 1964). [Pg.330]

Alkyl cations are thus not directly observed in sulphuric acid systems, because they are transient intermediates present in low concentrations and react with the olefins present in equilibrium. From observations of solvolysis rates for allylic halides (Vernon, 1954), the direct observation of allylic cation equilibria, and the equilibrium constant for the t-butyl alcohol/2-methylpropene system (Taft and Riesz, 1955), the ratio of t-butyl cation to 2-methylpropene in 96% H2SO4 has been calculated to be 10 . Thus, it is evident that sulphuric acid is not a suitable system for the observation of stable alkyl cations. In other acid systems, such as BFj-CHsCOOH in ethylene dichloride, olefins, such as butene, alkylate and undergo hydride transfer producing hydrocarbons and alkylated alkenyl cations as the end products (Roberts, 1965). This behaviour is expected to be quite general in conventional strong acids. [Pg.332]

Ion cyclotron resonance (ICR) spectroscopy has been used to determine the reaction enthalphy (A//r) of hydride-transfer reaction of silanes with various hydrocarbons having known hydride affinities (Reaction 2.19). The hydride affinities of R3Si+, D//(X3Si+—H ) = Affbase, were obtained from Equation (2.20) and are summarized in Table 2.6 [30,31]-... [Pg.29]

CO formation on copper electrodes appears to be accompanied by hydride formation as well [103]. In Sch. 3, the surface bound CO is reduced by a hydride transfer reaction to form a formyl species as shown in step 2. There are precedents in organometallic chemistry for late transition metal hydrides reducing bound CO [105-109]. Protonation of the adsorbed formyl in step 3 results in the formation of a hydroxy carbene species [110, 111]. This hydroxycarbene species could be considered to be an adsorbed and rearranged form of formaldehyde, and the reduction of formaldehyde at a copper electrode has been reported to form hydrocarbons [102]. However, reduction of... [Pg.219]

This process has not been studied in detail. It has been shown that diphenylnitren-ium ion reacts with various hydrocarbons and metal hydrides to give diphenyl amine. An analysis of the rate constants for these processes showed that the reaction was most likely a hydride transfer, rather than a hydrogen atom transfer (Fig. 13.56). Novak and Kazerani found a similar process in their study of the decay reaction of heteroarylnitrenium ions. [Pg.628]

Positional Isomerization. A different type of isomerization, substituent migration, takes place when di- and polyalkylbenzenes (naphthalenes, etc.) are treated with acidic catalysts. Similar to the isomerization of alkanes, thermodynamic equilibria of neutral arylalkanes and the corresponding carbocations are different. This difference permits the synthesis of isomers in amounts exceeding thermodynamic equilibrium when appropriate reaction conditions (excess acid, fast hydride transfer) are applied. Most of these studies were carried out in connection with the alkylation of aromatic hydrocarbons, and further details are found in Section 5.1.4. [Pg.170]

Studies reported on the hydrocarbon monomers show that there are three main areas of ionicities which produce different initiation, termination and termination reactions. The strong cationic systems involve the transfer or elimination of protons or carbonium ions. This has been well reviewed by Kennedy and Langer (1). At the other extreme, strong anionic systems react by hydride transfer. For the olefinic monomers, this region extends to include alkyl aluminum which undergo easy exchange to produce dimers (72). [Pg.385]

Gas-phase mass spectrometric studies891-894 also indicate exceptional stability of the 2-norbomyl cation relative to other potentially related secondary cations. A study by Kebarle and co-workers895 also suggests that the 2-norbornyl cation is more stable than the tert-butyl cation in the gas phase (based on hydride transfer equilibria from their respective hydrocarbons). [Pg.238]

Whereas step 1 is stoichiometric, steps 2 and 3 form a catalytic cycle involving the continuous generation of carbenium ions via hydride transfer from a new hydrocarbon molecule (step 3) and isomerization of the corresponding carbenium ion (step 2). This catalytic cycle is controlled by two kinetic and two thermodynamic parameters that can help orient the isomer distribution, depending on the reaction conditions. Step 2 is kinetically controlled by the relative rates of hydrogen shifts, alkyl shifts, and protonated cyclopropane formation, and it is thermodynamically controlled by the relative stabilities of the secondary and tertiary ions. (This area is thoroughly studied see Chapter 3.) Step 3, however, is kinetically controlled by the hydride transfer from excess of the starting hydrocarbon and by the relative thermodynamic stability of the various hydrocarbon isomers. [Pg.527]

Corma and co-workers152 have performed a detailed theoretical study (B3PW91/6-31G level) of the mechanism of the reactions between carbenium ions and alkanes (ethyl cation with ethane and propane and isopropyl cation with ethane, propane, and isopentane) including complete geometry optimization and characterization of the reactants, products, reaction intermediates, and transition states involved. Reaction enthalpies and activation energies for the various elemental steps and the equilibrium constants and reaction rate constants were also calculated. It was concluded that the interaction of a carbenium ion and an alkane always results in the formation of a carbonium cation, which is the intermediate not only in alkylation but also in other hydrocarbon transformations (hydride transfer, disproportionation, dehydrogenation). [Pg.550]


See other pages where Hydrocarbons hydride transfer is mentioned: [Pg.165]    [Pg.163]    [Pg.646]    [Pg.276]    [Pg.264]    [Pg.265]    [Pg.265]    [Pg.268]    [Pg.276]    [Pg.276]    [Pg.326]    [Pg.330]    [Pg.403]    [Pg.458]    [Pg.461]    [Pg.509]    [Pg.551]    [Pg.158]    [Pg.162]    [Pg.735]    [Pg.275]    [Pg.84]    [Pg.84]    [Pg.198]    [Pg.384]    [Pg.773]    [Pg.920]    [Pg.646]    [Pg.238]    [Pg.527]   
See also in sourсe #XX -- [ Pg.91 ]

See also in sourсe #XX -- [ Pg.8 , Pg.91 ]

See also in sourсe #XX -- [ Pg.8 , Pg.91 ]




SEARCH



Hydride transfer

© 2024 chempedia.info