Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Humic acid reaction with

NMR Spectra of Soil Humic Acid Reacted with Aniline. ACOUSTIC NMR spectra of the soil humic acid reacted with the labelled aniline in the presence and absence of peroxidase and bimessite are shown in Figure 8. As discussed previously, the sharp peak at 315 ppm in the spectrum of the noncatalyzed reaction appears to represent the reaction product of aniline with a contaminant or pure component in the humic acid sample (9). Vertical expansion of the spectrum revealed a broad, low intensity imine peak underlying the sharp contaminant peak. This underlying imine peak is more clearly visible in the solid state spectrum of the sample (Figure 9B), where the sharp contaminant peak is broadened out presumably as a result of chemical shift anisotropy. Imine nitrogens were also... [Pg.320]

The composition varies with the heat treatment and the end point according to x-ray diffraction studies it is a form of carbon that reconverts to weU-ordered graphite on heating to 1800°C. Before the use of x-rays, chemists used the Brodie reaction to differentiate between graphitic carbons and turbostratic carbons. Turbostratic carbons yield a brown solution of humic acids, whereas further oxidation of graphite oxide produces mellitic acid (benzenehexacarboxyhc acid) [517-60-2] ... [Pg.572]

Bioreactors containing an nndefined anaerobic consortinm rednced TNT to 2,4,6-triaminotoluene (TAT) in the presence of glncose (Dann et al. 1998). The sorption of TAT to montmorillonite clay was irreversible, and the snbstrate conld not be released by solvent extraction or by acid or alkaline treatment. Similar resnlts were obtained with humic acids in which covalent reactions with carbonyl or activated C=C bonding presumably occurred. Results from laboratory experiments nsing i C-labeled TNT in reactors to which... [Pg.675]

Coal with a mean particle size of less than 3 mm is slurried with water and then oxidized with oxygen or mixtures of oxygen and air at temperatures ranging from 100° to 300° C, at partial oxygen pressures ranging from 0.1 to 10 MPa and reaction periods ranging from 5 to 600 minutes [425]. In the absence of catalysts, such as alkaline bases, the main products of oxidation are humic acids. [Pg.315]

Phosphorus is one of the most important elements in soil chemistry because it is involved in numerous reactions with many different components. In addition to the species described earlier, phosphate will also form species with uranium, arsenic, and zinc. It also reacts with organic matter and with humic and fulvic acids to form environmentally important species [33-37],... [Pg.145]

Quinone is very sensitive to alkalis, even to carbonate and ammonia, and is converted by them into a brown acid possibly identical with the natural humic acid of brown coal (lignite) (Eller). The mechanism of this reaction remains obscure. [Pg.313]

Soil. 4-Chloroaniline covalently bonds with humates in soils to form quinoidal structures followed by oxidation to yield a nitrogen-substituted quinoid ring. A reaction half-life of 13 min was determined with one humic compound (Parris, 1980). Catechol, a humic acid monomer, reacted with 4-chloroaniline yielding 4,5-bis(4-chlorophenylamino)-3,5-cyclohexadiene-l,2-dione (Adrian et al., 1989). [Pg.277]

Adrian, P.. Lahaniatis, E.S., Andreux, F., Mansour, M., Scheunert, I., and Korte, F. Reaction of the soil pollutant 4-chloroaniline with the humic acid monomer catechol, Chemosphere, 18(7/8) 1599-1609, 1989. [Pg.1623]

Humic substances. Analogous to the reactions described above, humic substances (the polymeric pigments from soil (humus) and marine sediments) can be formed by both enzymatic and non-enzymatic browning. High concentrations of free calcium and phosphate ions and supersaturation with respect to hydroxyapatite can sustain in soil, because adsorption of humic acids to mineral surfaces inhibits crystal growth (Inskeep and Silvertooth, 1988). A similar adsorption to tooth mineral in a caries lesion can be anticipated for polycarboxylic polymers from either the Maillard reaction or enzymatic browning. [Pg.36]

The effect of solution chemistry on the speciation of the organic contaminant 1-naphtol (1-hydroxynaphthalene) and its complexatiom with humic acid is reported by Karthikeyan and Chorover (2000). The complexation of 1-naphtol with humic acid (HA) was studied during seven days of contact, as a function of pH (4 to 11), ionic strength (0.001 and 0.1 M LiCl), and dissolved concentration (DO of 0 and 8 mg L ) using fluorescence, UV absorbance, and equilibrium dialysis techniques. In a LiCl solution, even in the absence of HA, oxidative transformation of 1-naphtol mediated by was observed. In addition, the presence of humic acid in solution, in the absence of DO, was found to promote 1-naphtol oxidation. These reactions are affected by the solution chemistry (pH, ionic strength, and cation composition). [Pg.344]

Fig. 16.20 Fluorescence quenching (FQ) of 1-naphthol in the presence of HA as a function of pH and reaction time (1-naphthol = 8pmol LHA = 11 ppm C ionic strength of O.IM LiQ) F and F denote fluorescence intensities in the absence and in the presence of the quencher (HA), respectively. Reprinted with permission from Karthikeyan KG, Chorover J (2000) Effects of solution chemistry on the oxidative transformation of 1-naphtol and its complexation with humic acid. Environ Sci Technol 34 2939-2946. Copyright 2000 American Chemical Society... Fig. 16.20 Fluorescence quenching (FQ) of 1-naphthol in the presence of HA as a function of pH and reaction time (1-naphthol = 8pmol LHA = 11 ppm C ionic strength of O.IM LiQ) F and F denote fluorescence intensities in the absence and in the presence of the quencher (HA), respectively. Reprinted with permission from Karthikeyan KG, Chorover J (2000) Effects of solution chemistry on the oxidative transformation of 1-naphtol and its complexation with humic acid. Environ Sci Technol 34 2939-2946. Copyright 2000 American Chemical Society...
The toxin is also likely to be adsorbed or complexed by soil humic acids. If the reaction is a simple adsorption reaction, all or part of the toxin might later become available for absorption by a receiver plant. If the toxin is complexed or precipitated by its reaction with soil humic substances, then it would be deactivated. [Pg.180]

Phenolic compounds have also been oxidatively polymerized to humic substances by clay minerals (29) and by the mineral fraction of a latasol (66). After a 10-day equilibration period, montmoril-lonite and illite clay minerals yielded 44 to 47% of the total added phenolic acids as humic substances whereas quartz gave only 9%. Samples of a latasol yielded over 63% of the total amount, from mixtures in varied proportion, of mono-, di- and trihydroxy phenolic compounds as humic substances (66). Extractions of the reaction products yielded humic, fulvic, and humin fractions that resembled soil natural fractions in color, in acid-base solubility, and in infrared absorption spectra. Wang and co-workers (67) further showed that the catalytic polymerization of catechol to humic substances was, enhanced by the presence of A1 oxide and increased with pH in the 5.0 to 7.0 range. Thus the normally very reactive products of Itgnin degradation can be linked into very stable humic acid polymers which will maintain a pool of potentially reactive phytotoxins in the soil. [Pg.367]


See other pages where Humic acid reaction with is mentioned: [Pg.13]    [Pg.615]    [Pg.13]    [Pg.615]    [Pg.287]    [Pg.43]    [Pg.315]    [Pg.322]    [Pg.323]    [Pg.225]    [Pg.173]    [Pg.380]    [Pg.169]    [Pg.413]    [Pg.4]    [Pg.207]    [Pg.659]    [Pg.672]    [Pg.50]    [Pg.330]    [Pg.132]    [Pg.474]    [Pg.479]    [Pg.65]    [Pg.193]    [Pg.42]    [Pg.270]    [Pg.479]    [Pg.120]    [Pg.394]    [Pg.212]    [Pg.345]    [Pg.404]    [Pg.606]    [Pg.361]    [Pg.105]    [Pg.60]    [Pg.536]   


SEARCH



Humic acid , acidity

Humic acids

© 2024 chempedia.info