Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homopolymers, crosslinked

The tightrope situation that arises from balancing high mobility, low crystallinity, and optimum crosslinking is often dealt with by using copolymers rather than homopolymers. With chain composition as an additional variable, molecules can be tailored better for specific application situations. [Pg.138]

As well as being homopolymers, the vinyl polymers and the SiH crosslinkers can be copolymers such as and M-D -Dj,-M, where the... [Pg.686]

In general, as the ion content is raised, the modulus or stiffness of the ionomer is increased, as shown by the data in Fig. 2. While the increase is much greater in the elevated temperature range, where the polymer is acting more like a crosslinked rubber, there is still a significant increase in the glassy modulus below Tg. For example, for the PMMA-based ionomer of Fig. 2, the modulus at 30°C is almost 20% above that of the homopolymer for an ionomer having an ion content of 12.4 mol%. For the... [Pg.147]

The mechanical properties of ionomers are generally superior to those of the homopolymer or copolymer from which the ionomer has been synthesized. This is particularly so when the ion content is near to or above the critical value at which the ionic cluster phase becomes dominant over the multiplet-containing matrix phase. The greater strength and stability of such ionomers is a result of efficient ionic-type crosslinking and an enhanced entanglement strand density. [Pg.152]

Homopolymerization of macroazoinimers and co-polymerization of macroinimers with a vinyl monomer yield crosslinked polyethyleneglycol or polyethyleneglycol-vinyl polymer-crosslinked block copolymer, respectively. The homopolymers and block copolymers having PEG units with molecular weights of 1000 and 1500 still showed crystallinity of the PEG units in the network structure [48] and the second heating thermograms of polymers having PEG-1000 and PEG-1500 units showed that the recrystallization rates were very fast (Fig. 3). [Pg.730]

Figure 3 DSC thermograms for (a) homopolymer of an ester type macroazoinimer, MAIM-1000, having PEG-1000 units and (b) styrene-PEG-1000 crosslinked polymer with MAIM-1000. Source Ref. 50. Figure 3 DSC thermograms for (a) homopolymer of an ester type macroazoinimer, MAIM-1000, having PEG-1000 units and (b) styrene-PEG-1000 crosslinked polymer with MAIM-1000. Source Ref. 50.
Triblock copolymers, as shown in Fig. 5.8 d), comprise a central homopolymer block of one type, the ends of which are attached to homopolymer chains of another type. As with other block copolymers, the components of triblocks may be compatible or incompatible, which will strongly influence their properties. Of particular interest are triblocks with incompatible sequences, the middle block of which is rubbery, and the end blocks of which are glassy and form the minor phase. When such polymers phase-segregate, it is possible for the end blocks of a single molecule to be incorporated into separate domains. Thus, a number of rubbery mid-block chains connect the glassy phases to one another. These materials display rubber-like properties, with the glassy domains acting as physical crosslinks. Examples of such materials are polystyrene/isoprene/polystyrene and polystyrene/polybutadiene/polystyrene triblock copolymers. [Pg.109]

The main method of crosslinking the homopolymer and copolymer is by use of thioureas, and, as the cure reaction requires basic conditions, an acid acceptor is also added. Litharge, red lead, magnesium oxide and dibasic lead phosphite are commonly used acid acceptors, and the most commonly used thiourea is ethylene thiourea, but this has a tendency to promote mould fouling. [Pg.91]

Cyclopolymerization of Nonconjugated Dienes. Cyclopolymerization is an addition polymerization that leads to introduction of cyclic structures into the main chain of the polymer. Nonconjugated dienes are the most deeply studied monomers for cyclopolymerization and for cyclocopolymerizations with alkene monomers 66 In general, (substituted and unsubstituted) dienes with double bonds that are linked by less than two or more than four atoms cannot undergo efficient cyclization and result in crosslinked materials.12 In fact, efficient cyclopolymerization processes have been described, for instance, for a,oo-dienes like 1,5-hexadiene, 2-methyl-l,5-hexadiene, 1,6-heptadiene, and 1,7-octadiene,67 73 which lead to formation of homopolymers and copolymers containing methylene-1,3-cycloalkane units. [Pg.26]

Chemical modification of polymers (J.) still remains a field of continuously increasing importance in macromolecular chemistry. In spite of its high diversification, it may be divided into 2 distinct but complementary main research lines a) the fundamental study of the chemical reactivity of macromolecular chains b) the synthesis of new homopolymers and copolymers, and the functionalization of linear or crosslinked polymers. Some of these facets have been reviewed in the last years (2-6), and the purpose of this presentation is to illustrate a number of characteristic topics both from fundamental and applied points of view, through some literature data and through our own studies on nucleophilic substitution of polymethylmethacrylate (PMMA). [Pg.119]

Table IV summarizes the glass transition temperature of a number of special functional oil-based homopolymers. Many of the polymers shown indeed have T s below the critical value. It is now believed that the synthetically epoxidized oils were fully epoxidized, producing materials with unusually high degrees of crosslinking, which tended to raise their T s beyond the desirable range. Table IV summarizes the glass transition temperature of a number of special functional oil-based homopolymers. Many of the polymers shown indeed have T s below the critical value. It is now believed that the synthetically epoxidized oils were fully epoxidized, producing materials with unusually high degrees of crosslinking, which tended to raise their T s beyond the desirable range.
Another interesting positive-tone polyacrylate DUV resist has been reported by Ohno and coworkers (82). This material is a copolymer of methyl methacrylate and glycidyl methacrylate. Such materials are negative e-beam resists, yet in the DUV they function as positive resists. Thermal crosslinking of the images after development provides relief structures with exceptional thermal stability. The reported sensitivity of these copolymers is surprising, since there are no obvious scission mechanisms available to the system other than those operative in PMMA homopolymer, and the glylcidy side-chain does not increase the optical density of the system. [Pg.152]

This is a theoretical study on the entanglement architecture and mechanical properties of an ideal two-component interpenetrating polymer network (IPN) composed of flexible chains (Fig. la). In this system molecular interaction between different polymer species is accomplished by the simultaneous or sequential polymerization of the polymeric precursors [1 ]. Chains which are thermodynamically incompatible are permanently interlocked in a composite network due to the presence of chemical crosslinks. The network structure is thus reinforced by chain entanglements trapped between permanent junctions [2,3]. It is evident that, entanglements between identical chains lie further apart in an IPN than in a one-component network (Fig. lb) and entanglements associating heterogeneous polymers are formed in between homopolymer junctions. In the present study the density of the various interchain associations in the composite network is evaluated as a function of the properties of the pure network components. This information is used to estimate the equilibrium rubber elasticity modulus of the IPN. [Pg.59]

Product Identification was by GC/MS, NMR, and IR. Fundamental crosslinking chemistry was explored using swell measurements on simple solution copolymers and swell and tensile measurements with vinyl acetate (VAc), vinyl acetate/butyl acrylate (VAc/BA) or vinyl acetate/ethylene (VAE) emulsion copolymers. Polymer synthesis 1s described In a subsequent paper (6). Homopolymer Tg was measured by DSC on a sample polymerized In Isopropanol. Mechanistic studies were done 1n solution, usually at room temperature, with 1, 2 and the acetyl analogs 1, 2 (R =CH3). [Pg.454]

Peroxide crosslinking of the copolymer is more efficient than that of the homopolymer (Table 9-1). The process becomes a chain reaction (but with short kinetic chain length) involving polymerization of the pendant vinyl groups on the polysiloxane chains in combination with coupling of polymeric radicals. The crosslinking of EPDM rubbers is similarly more efficient when compared to EPM rubbers since the former contain double bonds in the polymer chain. [Pg.743]


See other pages where Homopolymers, crosslinked is mentioned: [Pg.98]    [Pg.98]    [Pg.123]    [Pg.422]    [Pg.510]    [Pg.146]    [Pg.150]    [Pg.253]    [Pg.475]    [Pg.476]    [Pg.490]    [Pg.492]    [Pg.508]    [Pg.95]    [Pg.106]    [Pg.168]    [Pg.95]    [Pg.24]    [Pg.135]    [Pg.148]    [Pg.172]    [Pg.234]    [Pg.92]    [Pg.100]    [Pg.76]    [Pg.165]    [Pg.165]    [Pg.166]    [Pg.172]    [Pg.226]    [Pg.277]    [Pg.156]    [Pg.260]    [Pg.348]    [Pg.151]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



© 2024 chempedia.info