Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crosslinking materials

A conclusion as to the effect of crosslinking on thermal expansion is not possible. Clearly, the polymers with many crosslinks and with short strands expand less than the uncrosslinked materials when heated. However, this effect cannot exclusively be attributed to the presence of crosslinks. It may just as well originate from the increased density of the crosslinked materials which was shown to be responsible for the increase in the moduli. [Pg.333]

There are a number of methods of classifying polymers. One is to adopt the approach of using their response to thermal treatment and to divide them into thermoplastics and thermosets. Thermoplastics are polymers which melt when heated and resolidify when cooled, while thermosets are those which do not melt when heated but, at sufficiently high temperatures, decompose irreversibly. This system has the benefit that there is a useful chemical distinction between the two groups. Thermoplastics comprise essentially linear or lightly branched polymer molecules, while thermosets are substantially crosslinked materials, consisting of an extensive three-dimensional network of covalent chemical bonding. [Pg.4]

A much more heavily crosslinked material can be obtained by increasing the amount of sulfur in the mixture, so that it represents about a third of the mass of the product. Heating such a mixture of raw mbber and sulfur at 150 °C until reaction is complete gives a hard, thermoset material that is not at all elastic. This material is called ebonite and is used to make car battery cases. [Pg.20]

The mechanical properties of polymers also depend on the extent of crosslinking. Uncrosslinked or lightly crosslinked materials tend to be soft and reasonably flexible, particularly above the glass transition temperature. [Pg.54]

Heavily crosslinked polymers, by contrast, tend to be very brittle and, unlike thermoplastics, this brittleness cannot be altered much by heahng. Heavily crosslinked materials have a dense three-dimensional network of covalent bonds in them, with little freedom for motion by the individual segments of the molecules involved in such structures. Hence there is no mechanism available to allow the material to take up the stress, with the result that it fails catastrophically at a given load with minimal deformation. [Pg.55]

This ROP of hexachlorocyclophosphazene to polydichlorophosphazene is very relevant in phosphazene chemistry as it has been used in almost every laboratory in the world for the preparation of poly(organophosphazenes) starting from the middle of the 1960s up to recent times [38]. H. R. Allcock discovered in 1965 [40-42] that (NPCl2)3 can open its inorganic ring thermally, under strictly controlled experimental conditions (250 °C, vacuum of 10" torr, and reaction time of 8-12 h), to form polydichlorophosphazene in a reasonable yield, but in a rather slow and irreproducible way [38]. Moreover, the final polymer obtained shows a very variable MW and MW distribution, with a strong tendency to produce crosslinked materials [45]. [Pg.172]

To prepare crosslinked material, 2 eq of the diketene acetal is reacted with 1 eq of the diol and the resulting prepolymer is then reacted with a triol or a mixture of diols and triols. [Pg.128]

A number of copolymers 14 have been prepared by cothermolysis of the new derivatives, 12 and 13, with the simplest phosphoranimine precursors, MegSiN = P(OCH2CFg)(Me)R (11). The copolymers 14 derived from the Peterson olefination products 13 are soluble, non-crosslinked materials with molecular weights in the 30,000 -100,000 range. This implies... [Pg.287]

Fig. 10. Experimental values of the gel stiffness S plotted against the relaxation exponent n for crosslinked polycaprolactone at different stoichiometric ratios [59]. The dashed line connects the equilibrium modulus of the fully crosslinked material (on left axis) and the zero shear viscosity of the precursor (on right axis)... Fig. 10. Experimental values of the gel stiffness S plotted against the relaxation exponent n for crosslinked polycaprolactone at different stoichiometric ratios [59]. The dashed line connects the equilibrium modulus of the fully crosslinked material (on left axis) and the zero shear viscosity of the precursor (on right axis)...
Mechanical and Degradation Properties. Studies characterizing the mechanical properties of these highly crosslinked materials indicate properties that are intermediate between those of cortical and trabecular bone. Table I summarizes these results along with the mechanical properties of bone. [Pg.197]

Cyclopolymerization of Nonconjugated Dienes. Cyclopolymerization is an addition polymerization that leads to introduction of cyclic structures into the main chain of the polymer. Nonconjugated dienes are the most deeply studied monomers for cyclopolymerization and for cyclocopolymerizations with alkene monomers 66 In general, (substituted and unsubstituted) dienes with double bonds that are linked by less than two or more than four atoms cannot undergo efficient cyclization and result in crosslinked materials.12 In fact, efficient cyclopolymerization processes have been described, for instance, for a,oo-dienes like 1,5-hexadiene, 2-methyl-l,5-hexadiene, 1,6-heptadiene, and 1,7-octadiene,67 73 which lead to formation of homopolymers and copolymers containing methylene-1,3-cycloalkane units. [Pg.26]

Several applications of hyperbranched polymers as precursors for synthesis of crosslinked materials have been reported [91-97] but systematic studies of crosslinking kinetics, gelation, network formation and network properties are still missing. These studies include application of hyperbranched aliphatic polyesters as hydroxy group containing precursors in alkyd resins by which the hardness of alkyd films was improved [94], Several studies involved the modification of hyperbranched polyesters to introduce polymerizable unsaturated C=C double bonds (maleate or acrylic groups). A crosslinked network was formed by free-radical homopolymerization or copolymerization. [Pg.142]

Advanced characterization of the structure, properties and function of the self-assembled precursor can be extrapolated from studies on the more robust crosslinked material, especially in changing or challenging environments, in which the assemblies would not remain intact. The introduction of crosslinks has aided in the maintenance of native conformations as a powerful technique during studies to determine the order and structure of biological assemblies [61, 62], Moreover, the robust characteristics that the crosslinks provide, combined with the ability to define their regioselectivity, are expected to expand the realm of possible applications for nanoscale materials. [Pg.167]

If a large number of branches exist that connect all of the backbone molecules into a three-dimensional network, the material will not flow when heated, and it is considered a thermoset resin. Vulcanized rubber is an example where the sulfur linkages create a three-dimensional network, converting the precursor rubber into a solid thermoset material. Crosslinked backbone chains are shown in Fig. 2.8(e). When extruding many thermoplastics, the polymer can undergo chemical reactions to form small amounts of crosslinked material. Partial crosslinking is a problem with some PE resins that contain residual double bonds that are made using... [Pg.33]

Such branched or slightly crosslinked materials possess unreacted groups and ladder blocks. The products after drying are usually insoluble in common solvents, therefore precise structure investigation is difficult. [Pg.120]

In the first portion of this section, we will focus on the materials and processes used to form polymer dental composites. This section will be followed by a discussion of the problems associated with polymer composite materials. An overview of the photopolymerization behavior and the polymer structure of these highly crosslinked materials is presented in Sects. 3 and 4. Lastly, some of the properties of current composite resin formulations are presented. [Pg.179]


See other pages where Crosslinking materials is mentioned: [Pg.733]    [Pg.39]    [Pg.58]    [Pg.85]    [Pg.266]    [Pg.424]    [Pg.54]    [Pg.59]    [Pg.122]    [Pg.105]    [Pg.106]    [Pg.167]    [Pg.190]    [Pg.140]    [Pg.368]    [Pg.281]    [Pg.282]    [Pg.402]    [Pg.342]    [Pg.184]    [Pg.134]    [Pg.150]    [Pg.4]    [Pg.81]    [Pg.14]    [Pg.162]    [Pg.501]    [Pg.503]    [Pg.98]    [Pg.347]    [Pg.81]    [Pg.412]    [Pg.412]    [Pg.502]    [Pg.126]   
See also in sourсe #XX -- [ Pg.378 , Pg.379 , Pg.388 , Pg.390 ]




SEARCH



Barrier materials crosslinking

Crosslinked Amorphous Materials

Crosslinked POSS-Containing Resins and Materials

Crosslinked materials

Crosslinked materials

Crosslinked materials, small punch test

Crosslinked polymer materials, recycling

Crosslinked resins and materials

Crosslinking Thermoset materials

Crosslinking protein-based materials

In situ crosslinking or polymerizing materials

Perspectives. Novel crosslinked polyurethanes as shape-memory materials

Photo-crosslinking materials

© 2024 chempedia.info