Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Incompatibility thermodynamic

Most polymer pairs are thermodynamically incompatible, in the sense that their free energy of mixing is positive. This does not mean that there is absolutely no interdiffusion at all at the interface between them adjacent to the interface limited interdiffusion occurs, which can be seen as an increasing of the low surface entropy implied by a smooth surface [30-33]. This nanoscale roughening of an interface can increase the adhesion between the polymers. [Pg.338]

But there is another method — the use of heterogeneous blends of polymers [45, 46], To this end, electrical properties and distribution of the filler (carbon black) in the mixtures of polyethylene and thermodynamically incompatible polymers were investigated. [Pg.136]

The study of filler distribution by the methods of optical and electronic microscopy has shown that in all compositions obtained by method 4 the filler is distributed rather uniformly as in an individual polymer. In the mixtures of incompatible polymers, obtained by methods 1 and 2, the filler is distributed nonuniformly and there are zones of high concentration of the filler and almost empty ones. The size of such zones is close to the size of polymer regions known for mixtures of thermodynamically incompatible polymers — 1 to 10 p. [Pg.137]

This is a theoretical study on the entanglement architecture and mechanical properties of an ideal two-component interpenetrating polymer network (IPN) composed of flexible chains (Fig. la). In this system molecular interaction between different polymer species is accomplished by the simultaneous or sequential polymerization of the polymeric precursors [1 ]. Chains which are thermodynamically incompatible are permanently interlocked in a composite network due to the presence of chemical crosslinks. The network structure is thus reinforced by chain entanglements trapped between permanent junctions [2,3]. It is evident that, entanglements between identical chains lie further apart in an IPN than in a one-component network (Fig. lb) and entanglements associating heterogeneous polymers are formed in between homopolymer junctions. In the present study the density of the various interchain associations in the composite network is evaluated as a function of the properties of the pure network components. This information is used to estimate the equilibrium rubber elasticity modulus of the IPN. [Pg.59]

The thermodynamic incompatibility of many of the solid phases present with each other as well as their local environment, results in formation of secondary minerals. Although the secondary materials may comprise only a small volume fraction of the waste, they (1) tend to increase in amount with time, as weathering processes proceed, (2) typically form at grain surfaces and are thus physically liable to react with percolating gas or liquids, and (3) may exhibit sites suitable for sorption or crystallo-chemical incorporation of trace elements (see Donahoe, 2004). Frequently observed secondary minerals include jarosite and ettringite the former is known to sorb ions such as Mn and As, whereas ettringite can form solid solutions, in which SO4 is replaced by Cr04 (Kumarathasan et al. 1990). [Pg.221]

The polymer segments, first of all, must be thermodynamically incompatible. [Pg.46]

Dickinson, E., Semenova, M.G. (1992). Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility. Journal of the Chemical Society, Faraday Transactions, 88, 849-854. [Pg.27]

Antipova, A.S., Semenova, M.G. (1995). Effect of sucrose on the thermodynamic incompatibility of different biopolymers. Carbohydrate Polymers, 28, 359-365. [Pg.108]

Grinberg, V.Y., Tolstoguzov, V.B. (1997). Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocolloids, 11, 145-158. [Pg.110]

Kim, H.-J., Decker, E.A., McClements, D.J. (2006). Preparation of multiple emulsions based on thermodynamic incompatibility of heat-denatured whey protein and pectin solutions. Food Hydrocolloids, 20, 586-595. [Pg.111]

Table 7.1 shows that rather similar results were also found by Makri et al. (2005) for samples of coarse emulsions containing thermodynamically incompatible mixtures of legume seed protein + xanthan gum. The protein surface load was found to be enhanced in the presence of xanthan gum, especially at elevated ionic strengths. That is, there was observed to be an increase in the adsorption of legume seed proteins at the surface of the emulsion droplets which could be attributed to an increase in the thermodynamic activity of the proteins in the system in the presence of the incompatible polysaccharide (see Table 7.1). Associated with the greater extent of protein adsorption, the authors reported an enhancement in the emulsion stability. Table 7.1 shows that rather similar results were also found by Makri et al. (2005) for samples of coarse emulsions containing thermodynamically incompatible mixtures of legume seed protein + xanthan gum. The protein surface load was found to be enhanced in the presence of xanthan gum, especially at elevated ionic strengths. That is, there was observed to be an increase in the adsorption of legume seed proteins at the surface of the emulsion droplets which could be attributed to an increase in the thermodynamic activity of the proteins in the system in the presence of the incompatible polysaccharide (see Table 7.1). Associated with the greater extent of protein adsorption, the authors reported an enhancement in the emulsion stability.
The presence of a thermodynamically incompatible polysaccharide in the aqueous phase can enhance the effective protein emulsifying capacity. The greater surface activity of the protein in the mixed biopolymer system facilitates the creation of smaller emulsion droplets, i.e., an increase in total surface area of the freshly prepared emulsion stabilized by the mixture of thermodynamically incompatible biopolymers (see Figure 3.4) (Dickinson and Semenova, 1992 Semenova el al., 1999a Tsapkina et al., 1992 Makri et al., 2005). It should be noted, however, that some hydrocolloids do cause a reduction in the protein emulsifying capacity by reducing the protein adsorption efficiency as a result of viscosity effects. [Pg.245]

Figure 7.10 Effect of the thermodynamic incompatibility of otsi/p-casein + high-methoxy pectin (pH = 7.0, / = 0.01 M) on phase diagram of the mixed solutions and elastic modulus of corresponding casein-stabilized emulsions (40 vol% oil, 2 wt% protein), (a) (O) Binodal line for p-casein + pectin solution with critical point ( ) ( ) binodal line for asi-casein + pectin solution with critical point ( ). (b) Complex shear modulus G (1 Hz) is plotted against the pectin concentration (O) p-casein ( ) o i -casein. Dotted lines indicate the range of pectin concentration for phase separation in the mixed solutions. The pectin was added to the protein solution before emulsion preparation. Data are taken front Semenova et al. (1999a). Figure 7.10 Effect of the thermodynamic incompatibility of otsi/p-casein + high-methoxy pectin (pH = 7.0, / = 0.01 M) on phase diagram of the mixed solutions and elastic modulus of corresponding casein-stabilized emulsions (40 vol% oil, 2 wt% protein), (a) (O) Binodal line for p-casein + pectin solution with critical point ( ) ( ) binodal line for asi-casein + pectin solution with critical point ( ). (b) Complex shear modulus G (1 Hz) is plotted against the pectin concentration (O) p-casein ( ) o i -casein. Dotted lines indicate the range of pectin concentration for phase separation in the mixed solutions. The pectin was added to the protein solution before emulsion preparation. Data are taken front Semenova et al. (1999a).
There seems to be a sort of analogy here with the arrested phase separation of a protein-stabilized depletion-flocculated emulsion containing a thermodynamically incompatible hydrocolloid like xanthan gum (Moschakis et al., 2005 Dickinson, 2006b). [Pg.255]

It is to be anticipated that thermodynamic incompatibility between a protein and a polysaccharide in an adsorbed film around the oil droplets or air bubbles in an emulsion or foam would have an influence on the... [Pg.339]

Damodaran, S., Razumovsky, L. (2003). Competitive adsorption and thermodynamic incompatibility of mixing of p-casein and gum arabic at the air-water interface. Food Hydrocolloids, 17, 355-363. [Pg.346]

Razumovsky, L., Damodaran, S. (1999). Thermodynamic incompatibility of proteins at the air-water interface Colloids and Surfaces B Biointerfaces, 13, 251-261. [Pg.352]


See other pages where Incompatibility thermodynamic is mentioned: [Pg.11]    [Pg.464]    [Pg.710]    [Pg.137]    [Pg.27]    [Pg.31]    [Pg.102]    [Pg.871]    [Pg.6]    [Pg.27]    [Pg.46]    [Pg.87]    [Pg.233]    [Pg.235]    [Pg.244]    [Pg.249]    [Pg.251]    [Pg.251]    [Pg.255]    [Pg.255]    [Pg.256]    [Pg.291]    [Pg.318]    [Pg.319]    [Pg.339]    [Pg.340]    [Pg.13]   
See also in sourсe #XX -- [ Pg.31 , Pg.87 , Pg.128 , Pg.233 , Pg.339 ]

See also in sourсe #XX -- [ Pg.399 ]

See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.1110 ]




SEARCH



Incompatability

Incompatibility

Incompatibility Incompatible

Incompatible

Incompatibles

Proteins thermodynamic incompatibility

Thermodynamically incompatible

Thermodynamically incompatible

Thermodynamically incompatible mixtures

© 2024 chempedia.info