Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-performance liquid additives

High Performance Liquid Chromatography. Although chiral mobile phase additives have been used in high performance Hquid chromatography (hplc), the large amounts of solvent, thus chiral mobile phase additive, required to pre-equiUbrate the stationary phase renders this approach much less attractive than for dc and is not discussed here. [Pg.63]

As a method of research, has been used high-performance liquid chromatography in reversed - phase regime (RP HPLC). The advantage of the present method is the following the additional information about AIST and FAS composition (homologous distribution) simple preparation of samples (dilution of a CS sample of in a mobile phase). [Pg.133]

Commercial grades of PVP, K-15, K-30, K-90, and K-120 and the quaternized copolymer of vinylpyrrolidone and dimthylaminoethylmethacrylate (poly-VP/ DMAEMA) made by International Specialty Products (ISP) were used in this study. PEO standard calibration kits were purchased from Polymer Laboratories Ltd. (PL), American Polymer Standards Corporation (APSC), Polymer Standards Service (PSS), and Tosoh Corporation (TSK). In addition, two narrow NIST standards, 1923 and 1924, were used to evaluate commercial PEO standards. Deionized, filtered water, and high-performance liquid chromatography grade methanol purchased from Aldrich or Fischer Scientific were used in this study. Lithium nitrate (LiN03) from Aldrich was the salt added to the mobile phases to control for polyelectrolyte effects. [Pg.501]

High performance liquid chromatography (HPLC) has been by far the most important method for separating chlorophylls. Open column chromatography and thin layer chromatography are still used for clean-up procedures to isolate and separate carotenoids and other lipids from chlorophylls and for preparative applications, but both are losing importance for analytical purposes due to their low resolution and have been replaced by more effective techniques like solid phase, supercritical fluid extraction and counter current chromatography. The whole analysis should be as brief as possible, since each additional step is a potential source of epimers and allomers. [Pg.432]

Pyrimidifen is extracted from plant materials with methanol-water (7 3, v/v). The extracts are concentrated and pyrimidifen is partitioned with n-hexane after addition of sodium chloride. The organic phase is collected and concentrated. Pyrimidifen in the organic phase is purified by silica gel column chromatography. Pyrimidifen is dissolved in acetonitrile and injected into a high-performance liquid chromatography... [Pg.1336]

Many organic additives can be analysed using the technique of high performance liquid chromatography (HPLC), particularly using MS for positive identification. HPLC methods have now largely superseded thin layer chromatography (TLC)-based procedures. [Pg.570]

Guillaume et al. [69] presented a high performance liquid chromatographic method for an association study of miconazole and other imidazole derivatives in surfactant micellar using a hydrophilic reagent, Montanox DF 80. The thermodynamic results obtained showed that imidazole association in the surfactant micelles was effective over a concentration of surfactant equal to 0.4 pM. In addition, an enthalpy-entropy compensation study revealed that the type of interaction between the solute and the RP-18 stationary phase was independent of the molecular structure. The thermodynamic variations observed were considered the result of equilibrium displacement between the solute and free ethanol (respectively free surfactant) and its clusters (respective to micelles) created in the mobile phase. [Pg.49]

Clark et al. [81] determined the time course of A-acetylation of primaquine by Streptomyces roseochromogenous and Streptomyces rimosus by quantitative high performance liquid chromatographic analyses of the culture broths. The A-5-bistri-fluoroacetyl derivative of primaquine was used as an internal standard in the analysis for the quantitation of primaquine A-acetate in microbial culture broths. S. roseochromogenous forms the highest level of primaquine A-acetate at 24—36 h after substrate addition, while S. rimosus is slower in its acetylation, peaking at 3 days after substrate addition. The formation of a novel dimeric compound from the reaction of primaquine with 8-(4-phthalimido-l-methylbutylamino)-6-methoxy quinoline is also reported. [Pg.189]

Dean et al. [93] used a high performance liquid chromatographic method for the simultaneous determination of primaquine and carboxyprimaquine in plasma with electrochemical detection. After the addition of the internal standard, plasma was deproteinized by the addition of acetonitrile. Nitrogen-dried supernatants, resuspended in mobile phase were analyzed on a C8 reversed-phase column. Limits of detection for primaquine and carboxyprimaquine were 2 and 5 ng/mL with quantitation limits of 5 and 20 ng/mL, respectively. The assay sensitivity and specificity are sufficient to permit quantitation of the drug in plasma for pharmacokinetics following low dose (30 mg, base) oral administration of primaquine, typically used in the treatment of malaria and P. carinii pneumonia. [Pg.192]

In addition to GC/MS, high performance liquid chromatography (HPLC/MS) has been used to analyse natural resins in ancient samples, particularly for paint varnishes containing mastic and dammar resins [34]. A partial limitation of chromatographic techniques is that they do not permit the analysis of the polymeric fraction or insoluble fraction that may be present in the native resins or formed in the course of ageing. Techniques based on the direct introduction of the sample in the mass spectrometer such as direct temperature resolved mass spectrometry (DTMS), direct exposure mass spectrometry (DE-MS) and direct inlet mass spectrometry (DI-MS), and on analytical pyrolysis (Py-GC/MS), have been employed as complementary techniques to obtain preliminary information on the... [Pg.217]

High performance liquid chromatography, used in analysis to identify and quantify additives. [Pg.33]

Garst, J.E. (1984) Accurate, wide range, automated, high performance liquid chromatographic method for the estimation of octanol/water partition coefficients. II Equilibration in partition coefficient measurements, additivity of substituent-constants and correlation of biological data. J. Pharm. Sci. 73(11), 1623-1629. [Pg.608]

As a consequence of the previous considerations Kieber et al. [75] have developed an enzymic method to quantify formic acid in non-saline water samples at sub-micromolar concentrations. The method is based on the oxidation of formate by formate dehydrogenase with corresponding reduction of /3-nicotinamide adenine dinucleotide (j6-NAD+) to reduced -NAD+(/3-NADH) jS-NADH is quantified by reversed-phase high performance liquid chromatography with fluorimetric detection. An important feature of this method is that the enzymic reaction occurs directly in aqueous media, even seawater, and does not require sample pre-treatment other than simple filtration. The reaction proceeds at room temperature at a slightly alkaline pH (7.5-8.5), and is specific for formate with a detection limit of 0.5 im (SIN = 4) for a 200 xl injection. The precision of the method was 4.6% relative standard deviation (n = 6) for a 0.6 xM standard addition of formate to Sargasso seawater. Average re-... [Pg.76]


See other pages where High-performance liquid additives is mentioned: [Pg.274]    [Pg.531]    [Pg.109]    [Pg.286]    [Pg.287]    [Pg.863]    [Pg.493]    [Pg.139]    [Pg.259]    [Pg.148]    [Pg.99]    [Pg.863]    [Pg.74]    [Pg.117]    [Pg.13]    [Pg.26]    [Pg.305]    [Pg.32]    [Pg.297]    [Pg.70]    [Pg.26]    [Pg.128]    [Pg.5]    [Pg.47]    [Pg.196]    [Pg.168]    [Pg.515]    [Pg.227]    [Pg.374]    [Pg.378]    [Pg.38]    [Pg.1343]    [Pg.146]    [Pg.377]    [Pg.606]    [Pg.156]   
See also in sourсe #XX -- [ Pg.1614 ]




SEARCH



Performance Additive

© 2024 chempedia.info