Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High particle shape

Figure C2.17.2. Transmission electron micrograph of a gold nanoneedle. Inverse micelle environments allow for a great deal of control not only over particle size, but also particle shape. In this example, gold nanocrystals were prepared using a photolytic method in surfactant-rich solutions the surfactant interacts strongly with areas of low curvature, thus continued growth can occur only at the sharjD tips of nanocrystals, leading to the fonnation of high-aspect-ratio nanostmctures [52]. Figure C2.17.2. Transmission electron micrograph of a gold nanoneedle. Inverse micelle environments allow for a great deal of control not only over particle size, but also particle shape. In this example, gold nanocrystals were prepared using a photolytic method in surfactant-rich solutions the surfactant interacts strongly with areas of low curvature, thus continued growth can occur only at the sharjD tips of nanocrystals, leading to the fonnation of high-aspect-ratio nanostmctures [52].
This ideal case is rarely if ever encountered in practice in general there will be a distribution of particle sizes rather than a single size, and in addition there will usually be a range of particle shapes, many of them highly irregular. [Pg.26]

Hardness. The resistance of a fabricated mbber article to indentation, ie, hardness, is influenced by the amount and shape of its fillers. High loadings increase hardness. Fillers in the form of platelets or flakes, such as clays or mica, impart greater hardness to elastomers than other particle shapes at equivalent loadings. [Pg.369]

The manufacture of metal in powder form is a complex and highly engineered operation. It is dominated by the variables of the powder, namely those that are closely connected with an individual powder particle, those that refer to the mass of particles which form the powder, and those that refer to the voids in the particles themselves. In a mass of loosely piled powder, >60% of the volume consists of voids. The primary methods for the manufacture of metal powders are atomization, the reduction of metal oxides, and electrolytic deposition (15,16). Typical metal powder particle shapes are shown in Figure 5. [Pg.181]

Some particle size measuring techniques ate more particle shape sensitive than others. Data obtained by different methods can be significantly different, and whenever a particle size is reported, the measuring technique and conditions should always be mentioned. Even using the same equipment, the extremes of the distributions (low and high 10%) are usually not readily reproducible. [Pg.4]

Particle shape is also important. Disk-shaped as well as cylindrical-shaped conductors have a high response because large induced current loops are formed. Small randomly shaped conductors, such as those present in cmshed slag, also respond favorably. Sphere-shaped particles generate small-current loops, however, and do not have a high response. Multiple-current loops occur in conductors that have irregular bends, producing counteractive forces that tend to nullify each other. [Pg.430]

Abrasiveness. This property is closely related to hardness in homogenous materials, but can be affected by particle shape, eg, the presence of sharp corners. In many cases a small proportion, as low as 0.5%, of a hard impurity is enough to cause severe wear to many high speed machines. [Pg.140]

Binders. To create needed physical strength in catalysts, materials called binders are added (51) they bond the catalyst. A common binder material is a clay mineral such as kaolinite. The clay is added to the mixture of microparticles as they are formed into the desired particle shape, for example, by extmsion. Then the support is heated to remove water and possibly burnout material and then subjected to a high temperature, possibly 1500°C, to cause vitrification of the clay this is a conversion of the clay into a glasslike form that spreads over the microparticles of the support and binds them together. [Pg.173]

Particle shape also affects the sintering of a powder compact. Jagged or irregular shaped particles, which have a high surface area to volume ratio, have a higher driving force for densification and sinter faster than equiaxed particles. High aspect ratio platey particles, whiskers, and fibers, which pack poorly, sinter poorly. [Pg.311]

The physicochemical properties of carbon are highly dependent on its surface structure and chemical composition [66—68], The type and content of surface species, particle shape and size, pore-size distribution, BET surface area and pore-opening are of critical importance in the use of carbons as anode material. These properties have a major influence on (9IR, reversible capacity <2R, and the rate capability and safety of the battery. The surface chemical composition depends on the raw materials (carbon precursors), the production process, and the history of the carbon. Surface groups containing H, O, S, N, P, halogens, and other elements have been identified on carbon blacks [66, 67]. There is also ash on the surface of carbon and this typically contains Ca, Si, Fe, Al, and V. Ash and acidic oxides enhance the adsorption of the more polar compounds and electrolytes [66]. [Pg.430]

Note that, apart from the filler particle shape and size, the molecular mass of the base polymer may also have a marked effect on the viscosity of molten composites [182,183]. The higher the MM of the matrix the less apparent are the variations of relative viscosity with varying filler content. In Fig. 2, borrowed from [183], one can see that the effect of the matrix MM on the viscosity of filled systems decreases with the increasing filler activity. In the quoted reference it has also been shown that the lg r 0 — lg (MM)W relationships for filled and unfilled systems may intersect. The more branches the polymer has, the stronger is the filler effect on its viscosity. The data for filled high- (HDPE) and low-density polyethylene (LDPE) [164,182] may serve as an example the decrease of the molecular mass of LDPE causes a more rapid increase of the relative viscosity of filled systems than in case of HDPE. When the values (MM)W and (MM)W (MM) 1 are close, the increased degree of branching results in increase of the relative viscosity of filled system [184]. [Pg.26]

At low temperatures, reaction towards N2 and N2O product formation preferentially occurs at the (100) surface, and hence a significant particle shape sensitivity is predicted. At higher temperatures when NO readily desorbs, overall activation barriers on the different surfaces tend to become similar and hence surface sensitivity becomes less. The high selectivity toward NO at higher temperatures relates... [Pg.29]

Natural sand is a major component of most flowable fill mixes. Ferrous spent foundry sand can be used as substitute for natural sand (fine aggregate) in flowable fill.48 49 Spent sands from nonferrous foundries and foundry baghouse dust can contain high concentrations of heavy metals that may preclude their use in flowable fill applications. Some of the engineering properties of spent foundry sand that are of particular interest when foundry sand is used in flowable fill applications include particle shape, gradation, strength characteristics, soundness, deleterious substances, and corrosivity. [Pg.188]

For these reasons and other complex influences (e.g., large-diameter pipelines, particle-wall friction, particle shape, bends, etc.), it has been accepted that if high accuracy is needed, then some form of empiricism must be adopted. The preferred test-design procedure is listed below. [Pg.742]

The validation of CFD codes using pressure drop is most reliable when actual experimental data are taken in equipment identical to the situation that is being simulated. Existing literature correlations such as the Ergun equation are known to have shortcomings with respect to wall effects, particle shape effects, application to ordered beds and validity at high Re. The applicability of literature correlations to typical CFD simulation geometries needs to be examined critically before fruitful comparisons can be made. [Pg.344]

The studies discussed above deal with highly dispersed and therefore well-defined rhodium particles with which fundamental questions on particle shape, chemisorption and metal-support interactions can be addressed. Practical rhodium catalysts, for example those used in the three-way catalyst for reduction of NO by CO, have significantly larger particle sizes, however. In fact, large rhodium particles with diameters above 10 nm are much more active for the NO+CO reaction than the particles we discussed here, because of the large ensembles of Rh surface atoms needed for this reaction [28]. Such particles have also been extensively characterized with spectroscopic techniques and electron microscopy we mention in particular the work of Wong and McCabe [29] and Burkhardt and Schmidt [30], These studies deal with the materials science of rhodium catalysts that are closer to the ones used in practice, which is of great interest from an industrial point of view. [Pg.259]

Depending on operation conditions and metal properties, the shapes of the atomized particles may be spheroidal, flaky, acicular, or irregular, but spherical shape is predominant. The spheroidal particles are coarse. For example, roller-atomized Sn particles exhibited a mass median diameter of 220 to 680 pm. The large particle sizes and highly irregular particle shapes suggested that the disintegration process may be arrested either by the premature solidification or by the formation of a thick, viscous oxide layer on the liquid surface. The particle size distributions were found to closely follow a log-normal pattern even for non-uniform particle shapes. [Pg.105]


See other pages where High particle shape is mentioned: [Pg.2904]    [Pg.419]    [Pg.45]    [Pg.16]    [Pg.139]    [Pg.99]    [Pg.168]    [Pg.234]    [Pg.643]    [Pg.72]    [Pg.766]    [Pg.327]    [Pg.59]    [Pg.152]    [Pg.236]    [Pg.514]    [Pg.524]    [Pg.506]    [Pg.178]    [Pg.121]    [Pg.173]    [Pg.246]    [Pg.96]    [Pg.177]    [Pg.47]    [Pg.175]    [Pg.99]    [Pg.251]    [Pg.8]    [Pg.552]    [Pg.235]    [Pg.2]    [Pg.222]    [Pg.72]   
See also in sourсe #XX -- [ Pg.392 ]




SEARCH



Particle shape

© 2024 chempedia.info