Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalytic reactions steps

In the case of coupled heterogeneous catalytic reactions the form of the concentration curves of analytically determined gaseous or liquid components in the course of the reaction strongly depends on the relation between the rates of adsorption-desorption steps and the rates of surface chemical reactions. This is associated with the fact that even in the case of the simplest consecutive or parallel catalytic reaction the elementary steps (adsorption, surface reaction, and desorption) always constitute a system of both consecutive and parallel processes. If the slowest, i.e. ratedetermining steps, are surface reactions of adsorbed compounds, the concentration curves of the compounds in bulk phase will be qualitatively of the same form as the curves typical for noncatalytic consecutive (cf. Fig. 3b) or parallel reactions. However, anomalies in the course of bulk concentration curves may occur if the rate of one or more steps of adsorption-desorption character becomes comparable or even significantly lower then the rates of surface reactions, i.e. when surface and bulk concentration are not in equilibrium. [Pg.13]

The most complex type of gas-liquid-particle process is one in which gaseous components participate in a heterogeneous catalytic reaction, with the formation of gaseous products. The following elementary steps must occur in a process of this type ... [Pg.82]

Carbon monoxide oxidation is a relatively simple reaction, and generally its structurally insensitive nature makes it an ideal model of heterogeneous catalytic reactions. Each of the important mechanistic steps of this reaction, such as reactant adsorption and desorption, surface reaction, and desorption of products, has been studied extensively using modem surface-science techniques.17 The structure insensitivity of this reaction is illustrated in Figure 10.4. Here, carbon dioxide turnover frequencies over Rh(l 11) and Rh(100) surfaces are compared with supported Rh catalysts.3 As with CO hydrogenation on nickel, it is readily apparent that, not only does the choice of surface plane matters, but also the size of the active species.18-21 Studies of this system also indicated that, under the reaction conditions of Figure 10.4, the rhodium surface was covered with CO. This means that the reaction is limited by the desorption of carbon monoxide and the adsorption of oxygen. [Pg.340]

The relative simplicity of CO oxidation makes this reaction an ideal model system of a heterogeneous catalytic reaction. Each of the mechanistic steps (adsorption and desorption of the reactants, surface reaction, and desorption of products) has been probed extensively with surface science techniques, as has the interaction between O2 and CO " . These studies have provided essential information necessary for understanding the elementary processes which occur in CO oxidation. [Pg.161]

The broad applicability of LFERs for heterogeneous catalytic reactions has been demonstrated independently by Kraus (23) and Yoneda (24-27). The first author concentrated mostly on the established relationships such as the Hammett and Taft equations, whereas Yoneda has concentrated particularly on correlations with reactivity indices and other quantities. Since then, LFERs have been widely applied to heterogeneous catalytic reactions, and experience has been gained as to the suitability of each different type. An important step has been made toward an interpretation of the slopes of linear correlations (parameter a in Eq. 3) as the quantities that are closely connected with reaction mechanisms. [Pg.158]

The interpretation of slopes also requires meaningful rate data. When the reaction consists of a series of elementary steps (and this is always so with heterogeneous catalytic reactions), the rate coefficients obtained from a superficial treatment of a limited set of measurements may be composites of several rate and equilibrium constants for individual steps, in favorable cases constituting a product. As every step may be influenced by the substituents, the resulting effect can be easily attributed to a false elementary step. [Pg.161]

As already mentioned, the first step in any heterogeneous catalytic reaction is the adsorption of a gas molecule onto a solid surface. Adsorption heat measurements can provide information about the adsorption process not available using other surface analytical tools. For example, differential heat measurements can provide valuable insights into sites distribution on the catalyst surface as well as quantitative information on the changes in catalyst particle surface chemistry that result from changes in particle size or catalyst support material [148-150],... [Pg.215]

Rate equations for simple reversible reactions are often developed from mechanistic models on the assumption that the kinetics of elementary steps can be described in terms of rate constants and surface concentrations of intermediates. An application of the Langmuir adsorption theory for such development was described in the classic text by Hougen and Watson (/ ), and was used for constructing rate equations for a number of heterogeneous catalytic reactions. In their treatment it was assumed that one step would be rate-controlling for a unique mechanism with the other steps at equilibrium. [Pg.296]

The electronic structure of catalysts has been shown to be important in adsorption, and since adsorption is a necessary step in heterogeneous catalytic reactions, it would be expected that changes in the electronic structure would influence the rate of reaction. [Pg.20]

The complex nature of heterogeneous catalytic reactions, which consist of a sequence of at least three steps (adsorption, surface reaction and desorption), the possible intervention of transport processes and the uncertainty about the actual state of the surface makes every attempt to obtain a complete formal kinetic description without simplifying assumptions futile. In this situation, some authors prefer fully empirical equations of the type... [Pg.272]

The El mechanism has, as the rate-determining step in solution, the ionisation of the reactant forming a carbonium ion which then decomposes rapidly. For heterogeneous catalytic reactions, the important features are the occurrence of the reaction in two steps and the presence on the solid surface of carbonium ions or species resembling them closely. Again, the kinetic characterisation by way of an unimolecular process is of little value. Even the relative rates of the two steps may be reversed on solid catalysts. A cooperation of an acidic and a basic site is also assumed, the reaction being initiated by the action of the acidic site on the group X. [Pg.275]

Figure 3.2-5. Steps involved in heterogeneous catalytic reactions. Figure 3.2-5. Steps involved in heterogeneous catalytic reactions.
A heterogeneous catalytic reaction, by definition, necessitates the participation of at least one chemisorbed intermediate (54) and involves a sequence of interlinked and interdependent (55,56) steps, which include the adsorption of reactant(s), one or more surface rearrangements, and the desorption of product(s). More than one area of the solid may be active in promoting reaction the activity of such regions may vary from one crystallographic... [Pg.256]

Michaelis-Menten approach (Michaelis and Menten, 1913) It is assumed that the product-releasing step, Eq. (2.6), is much slower than the reversible reaction, Eq. (2.5), and the slow step determines the rate, while the other is at equilibrium. This is an assumption which is often employed in heterogeneous catalytic reactions in chemical kinetics.3 Even though the enzyme is... [Pg.13]

For heterogeneous catalytic reactions, the first step is the adsorption of reactants on the surface of a catalyst and the second step is the chemical reaction between the reactants to produce products. Since the first step involves only weak physical or chemical interaction, its speed is much quicker than that of the second step, which requires complicated chemical interaction. This phenomena is fairly analogous to enzyme reactions. [Pg.13]

Thus one can draw the conclusion that the lattice gas model taking into account the interaction of neighbouring molecules is only a first step in studying the effect of adsorbed particle interaction on the rate of heterogeneous catalytic reactions. [Pg.70]

It should be noted that the detailed modelling of heterogeneous catalytic reactions faces some specific difficulties. Compared with homogeneous systems, the limits of the field wherein the law of mass action analog (the surface-action law) can be correctly applied are less distinct. Still less reliable are the elementary step constants. Nevertheless, we believe that, despite the complexity of "real kinetics , the importance of studying the models fitting the law of mass action cannot be undervalued. These models describe the chemical components of a complex catalytic process properly and, on the other hand, they are a necessary step that can be treated as a first approximation. Our study is devoted to the analysis of just these models. [Pg.80]

Strictly speaking, mechanisms for heterogeneous catalytic reactions can never be monomolecular. Thus they always include adsorption steps in which the initial substances are a minimum of two in number, i.e. gas and catalyst. But if one considers conversions of only surface compounds (at a constant gas-phase composition), a catalytic reaction mechanism can also be treated as monomolecular. It is these mechanisms that Temkin designates as linear (see Chap. 2). [Pg.93]

Linear mechanisms are rather common for heterogeneous catalytic reactions. Examples are given and examined by Cornish-Bowden [43] and Ker-nevez [44]. Non-linear mechanisms, i.e. those including interactions of several molecules of the same or different surface substances, however, are more frequent. For example, a widely spread step of dissociative adsorption is non-linear. [Pg.169]

In summary, it can be seen for the three-step reaction scheme of this example that the net rate of the overall reaction is controlled by three kinetic parameters, KTSi, that depend only on the properties of the transition states for the elementary steps relative to the reactants (and possibly the products) of the overall reaction. The reaction scheme is represented by six individual rate constants /c, and /c the product of which must give the equilibrium constant for the overall reaction. However, it is not necessary to determine values for five linearly independent rate constants to determine the rate of the overall reaction. We conclude that the maximum number of kinetic parameters needed to determine the net rate of overall reaction is equal to the number of transition states in the reaction scheme (equal to three in the current case) since each kinetic parameter is related to a quasi-equilibrium constant for the formation of each transition state from the reactants and/or products of the overall reaction. To calculate rates of heterogeneous catalytic reactions, an addition kinetic parameter is required for each surface species that is abundant on the catalyst surface. Specifically, the net rate of the overall reaction is determined by the intrinsic kinetic parameters Kf s as well as by the fraction of the surface sites, 0, available for formation of the transition states furthermore, the value of o. is determined by the extent of site blocking by abundant surface species. [Pg.181]

KINETICS OF SURFACE REACTIONS 9.6.1 Steps in a Heterogeneous Catalytic Reaction... [Pg.431]

The global process by which a heterogeneous catalytic reaction takes place in a packed-bed reactor can be described in a succession of steps, where the rate of the reaction is equivalent to the rate of the slowest stage in the whole mechanism of the reaction. The stages of a catalytic reaction in a packed-bed reactor are (see Figure 9.17) [126,127]... [Pg.452]

In this chapter, we will review the reaction dynamics studies which has been performed on supported model catalysts in order to unravel the elementary steps of heterogeneous catalytic reactions. In particular we will focus on the aspects that cannot be studied on extended surfaces like the effect of the size and shape of the metal particles and the role of the substrate in the reaction kinetics. In the first part we will describe the experimental methods and techniques used in these studies. Then we present an overview of the preparation and the structural characterization of the metal particle. Later, we will review the adsorption studies of NO, CO and 02. Finally, we will review the two reactions that have been investigated on the supported model catalysts the CO oxidation and the NO reduction by CO. [Pg.248]

Heterogeneous catalytic reactions, by their nature, involve a separate phase of catalyst, embedded in a phase of reacting species Therefore, the chemical transformation relies on a number of physical transport processes which may have a strong influence on the rate of the overall process and which may introduce an additional dependence on the operating conditions In the industrially important situation that the catalyst is a porous solid and the reactants form either a gaseous or a liquid phase, the following seven steps can be observed (Fig 1)... [Pg.325]

The kinetics of catalytic reactions on nonuniform surfaces have been discussed by Roginskii (330,331) certain general features of his discussion will be presented here. The rate of a complex multistage heterogeneous catalytic reaction is controlled by the rate of the slowest step. The slowest step may be the adsorption of the reactants, the chemical reactions on the surface, desorption of the products or diffusion of reactants or products through the gaseous phase near the surface of the catalyst. [Pg.254]

The overall kinetics of a heterogeneous catalytic reaction can be controlled by any of the seven steps listed above.6-9 We can distinguish which is rate controlling by determining the temperature dependence of the reaction. Once we know this we can design the catalyst to enhance the rate of the slowest step. [Pg.281]

This approach provides a description of the reaction rate in terms of elementary steps which underlie observed kinetics and their parameters and leads to the determination of rates of individual elementary steps of single heterogeneous catalytic reactions. [Pg.103]


See other pages where Heterogeneous catalytic reactions steps is mentioned: [Pg.225]    [Pg.2]    [Pg.7]    [Pg.17]    [Pg.39]    [Pg.94]    [Pg.152]    [Pg.152]    [Pg.65]    [Pg.172]    [Pg.190]    [Pg.230]    [Pg.155]    [Pg.369]    [Pg.465]    [Pg.283]    [Pg.62]    [Pg.186]    [Pg.269]    [Pg.510]    [Pg.1]    [Pg.431]    [Pg.248]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Catalytic heterogeneous

Catalytic reaction steps

Heterogeneous catalytic reactions

Heterogeneous reaction

Reaction heterogeneous reactions

Step reactions

© 2024 chempedia.info