Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalysis effectiveness

In the same way as in heterogeneous catalysis, effective diffusion coefficients (for fluxes with respect to the total geometric area) are decreased relative to the values in the melt Dy because of the obstruction due to the crystalline phase at a volume fraction (j) and because of the tortuosity factor xo (which depends on the structure of the solid, values of 1.5 to 3 being common) the relationship is given in Eq. (47). [Pg.81]

Diffusivity and tortuosity affect resistance to diffusion caused by collision with other molecules (bulk diffusion) or by collision with the walls of the pore (Knudsen diffusion). Actual diffusivity in common porous catalysts is intermediate between the two types. Measurements and correlations of diffusivities of both types are Known. Diffusion is expressed per unit cross section and unit thickness of the pellet. Diffusion rate through the pellet then depends on the porosity d and a tortuosity faclor 1 that accounts for increased resistance of crooked and varied-diameter pores. Effective diffusion coefficient is D ff = Empirical porosities range from 0.3 to 0.7, tortuosities from 2 to 7. In the absence of other information, Satterfield Heterogeneous Catalysis in Practice, McGraw-HiU, 1991) recommends taking d = 0.5 and T = 4. In this area, clearly, precision is not a feature. [Pg.2095]

One problem with heterogeneous catalysis is that the solid catalyst is easily poisoned. Foreign materials deposited on the catalytic surface during the reaction reduce or even destroy its effectiveness. A major reason for using unleaded gasoline is that lead metal poisons the Pt-Rh mixture in the catalytic converter. [Pg.306]

G. Parravano and M. Boudart The Compensation Effect in Heterogeneous Catalysis E. Cremer... [Pg.423]

G. Pacchioni, J.R. Lomas, and F. Illas, Electric field effects in heterogeneous catalysis, Molecular Catalysis A Chemical 119, 263-273 (1997). [Pg.13]

There is a very rich literature and a comprehensive book6 on the role of promoters in heterogeneous catalysis. The vast majority of studies refers to the adsorption of promoters and to the effect of promoters on the chemisorptive state of coadsorbed species on well characterized single crystal surfaces. A... [Pg.15]

The effect of spillover plays an important role in heterogeneous catalysis and was extensively studied during recent years. It was first noticed in the 1950s by Kuriacose.62 Work in this area has been reviewed by Teichner63 and by Conner et al.64... [Pg.101]

Normally in heterogeneous catalysis compensation effect behaviour is obtained either for the same reaction upon using differently prepared catalysts of the same type, or with the same catalyst upon using a homologous set of reactants. In the case of electrochemical promotion (Figs. 4.38 and 4.39) one has the same catalyst and the same reaction but various potentials, i.e. various amounts of promoter on the catalyst surface. [Pg.166]

As shown in Figs. 4.38 and 4.39 there can be no doubt that the effect is real. As well known from the heterogeneous catalysis literature its existence... [Pg.166]

Consequently the absolute potential is a material property which can be used to characterize solid electrolyte materials, several of which, as discussed in Chapter 11, are used increasingly in recent years as high surface area catalyst supports. This in turn implies that the Fermi level of dispersed metal catalysts supported on such carriers will be pinned to the Fermi level (or absolute potential) of the carrier (support). As discussed in Chapter 11 this is intimately related to the effect of metal-support interactions, which is of central importance in heterogeneous catalysis. [Pg.358]

All these steps can influence the overall reaction rate. The reactor models of Chapter 9 are used to predict the bulk, gas-phase concentrations of reactants and products at point (r, z) in the reactor. They directly model only Steps 1 and 9, and the effects of Steps 2 through 8 are lumped into the pseudohomoge-neous rate expression, a, b,. ..), where a,b,. .. are the bulk, gas-phase concentrations. The overall reaction mechanism is complex, and the rate expression is necessarily empirical. Heterogeneous catalysis remains an experimental science. The techniques of this chapter are useful to interpret experimental results. Their predictive value is limited. [Pg.351]

Theoretically, the problem has been attacked by various approaches and on different levels. Simple derivations are connected with the theory of extrathermodynamic relationships and consider a single and simple mechanism of interaction to be a sufficient condition (2, 120). Alternative simple derivations depend on a plurality of mechanisms (4, 121, 122) or a complex mechanism of so called cooperative processes (113), or a particular form of temperature dependence (123). Fundamental studies in the framework of statistical mechanics have been done by Riietschi (96), Ritchie and Sager (124), and Thorn (125). Theories of more limited range of application have been advanced for heterogeneous catalysis (4, 5, 46-48, 122) and for solution enthalpies and entropies (126). However, most theories are concerned with reactions in the condensed phase (6, 127) and assume the controlling factors to be solvent effects (13, 21, 56, 109, 116, 128-130), hydrogen bonding (131), steric (13, 116, 132) and electrostatic (37, 133) effects, and the tunnel effect (4,... [Pg.418]

The idea that /3 continuously shifts with the temperature employed and thus remains experimentally inaccessible would be plausible and could remove many theoretical problems. However, there are few reaction series where the reversal of reactivity has been observed directly. Unambiguous examples are known, particularly in heterogeneous catalysis (4, 5, 189), as in Figure 5, and also from solution kinetics, even when in restricted reaction series (187, 190). There is the principal difficulty that reactions in solution cannot be followed in a sufficiently broad range of temperature, of course. It also seems that near the isokinetic temperature, even the Arrhenius law is fulfilled less accurately, making the determination of difficult. Nevertheless, we probably have to accept that reversal of reactivity is a possible, even though rare, phenomenon. The mechanism of such reaction series may be more complex than anticipated and a straightforward discussion in terms of, say, substituent effects may not be admissible. [Pg.457]

The fourth type was not detected in homogeneous kinetics (116) because of the unsuitable statistical treatment used, but it was known in heterogeneous catalysis (4, 5). It is the so called anticompensation, when AH and AS change in the opposite sense. It was supposed that solvent effects particularly can cause such changes (37). [Pg.458]

Among the theories of limited applicability, those of heterogeneous catalysis processes have been most developed (4, 5, 48). They are based on the assumption of many active sites with different activity, the distribution of which may be either random (23) or thermodynamic (27, 28, 48). Multiple adsorption (46, 47) and tunnel effects (4, 46) also are considered. It seems, however, that there is in principle no specific feature of isokinetic behavior in heterogeneous catalysis. It is true only that the phenomenon has been discovered in this category and that it can be followed easily because of large possible changes of temperature. [Pg.462]

Experiments showed that high methyl ester yields can be achieved with solid bases and super acids under moderate reaction conditions. The solid bases were more effective catalysts than the solid super acids. High stability can be achieved by an ordinary inexpensive preparation process, and the catalyst can be separated easily from the reaction products in the heterogeneous catalysis process. The costly catalyst removal process can be avoided compared with the homogeneous process. Therefore, the heterogeneous process using a solid catalyst should be more economical for biodiesel production. [Pg.156]

The coordination of ligands at the surface of metal nanoparticles has to influence the reactivity of these particles. However, only a few examples of asymmetric heterogeneous catalysis have been reported, the most popular ones using a platinum cinchonidine system [65,66]. In order to demonstrate the directing effect of asymmetric ligands, we have studied their coordination on ruthenium, palladium, and platinum nanoparticles and the influence of their presence on selected catalytic transformations. [Pg.248]

As an alternative approach towards the above requirement, Somorjai introduced the method of electron lithography [119] which represents an advanced HIGHTECH sample preparation technique. The method ensures uniform particle size and spacing e.g. Pt particles of 25 nm size could be placed with 50 nm separation. This array showed a uniform activity similar to those measured on single crystal in ethylene hydrogenation. The only difficulty with the method is that the particle size is so far not small enough. Comprehensive reviews have been lined up for the effect of dispersion and its role in heterogeneous catalysis [23,124,125]. [Pg.90]


See other pages where Heterogeneous catalysis effectiveness is mentioned: [Pg.547]    [Pg.547]    [Pg.265]    [Pg.110]    [Pg.2]    [Pg.371]    [Pg.430]    [Pg.489]    [Pg.457]    [Pg.461]    [Pg.87]    [Pg.136]    [Pg.279]    [Pg.566]    [Pg.6]    [Pg.207]    [Pg.68]    [Pg.310]    [Pg.66]    [Pg.69]    [Pg.711]    [Pg.185]    [Pg.38]    [Pg.165]    [Pg.219]    [Pg.7]    [Pg.110]   
See also in sourсe #XX -- [ Pg.477 ]




SEARCH



Catalysis heterogenized

Catalysis heterogenous

Catalysis, heterogenic

Compensation effect heterogeneous catalysis

Effect of Transport Phenomena on Heterogeneous Catalysis

Heterogeneous catalysis

Heterogeneous catalysis Effectiveness factor

Structure effects heterogeneous catalysis

© 2024 chempedia.info