Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst heterogeneous catalysis

In heterogeneous catalysis catalyst characterization plays an important role. It is fair to state that improved characterization techniques have been the major drive towards the development of heterogeneous catalysis as a mature technology. [Pg.94]

J. Van Weynbergh, J.-P. Schoebrichts, and J.- C. Colery, Direct synthesis of hydrogen peroxide by heterogeneous catalysis, catalyst for the said synthesis and method of preparation of the said catalyst, US Pat. 5447706 (1995). [Pg.54]

This book will be warmly welcomed not only by the people directly working in this dynamic field, but it will also be of significant interest to scientists and engineers involved in the general areas of heterogeneous catalysis, catalyst characterization and preparation, chemical reaction engineering, and hydrocarbon processing. [Pg.464]

A different approach to control the stereoselectivity of glycosylations is through the use of heterogeneous catalysis. Catalysts such as silver silicate were developed for this purpose [46]. Reactions of glycosyl halides on the surface of silver silicate are thought to proceed by a concerted mechanism providing, for example, (3-D-mannopyranosides 44 from a-D-mannosyl bromide 43 (Scheme 4.7). [Pg.114]

Heterogeneous catalysts. In heterogeneous catalysis, the catalyst is in a different phase from the reacting species. Most often, the... [Pg.46]

Catalysis in a single fluid phase (liquid, gas or supercritical fluid) is called homogeneous catalysis because the phase in which it occurs is relatively unifonn or homogeneous. The catalyst may be molecular or ionic. Catalysis at an interface (usually a solid surface) is called heterogeneous catalysis, an implication of this tenn is that more than one phase is present in the reactor, and the reactants are usually concentrated in a fluid phase in contact with the catalyst, e.g., a gas in contact with a solid. Most catalysts used in the largest teclmological processes are solids. The tenn catalytic site (or active site) describes the groups on the surface to which reactants bond for catalysis to occur the identities of the catalytic sites are often unknown because most solid surfaces are nonunifonn in stmcture and composition and difficult to characterize well, and the active sites often constitute a small minority of the surface sites. [Pg.2697]

The proposed mechanism by which chlorinated dioxins and furans form has shifted from one of incomplete destmction of the waste to one of low temperature, downstream formation on fly ash particles (33). Two mechanisms are proposed, a de novo synthesis, in which PCDD and PCDF are formed from organic carbon sources and Cl in the presence of metal catalysts, and a more direct synthesis from chlorinated organic precursors, again involving heterogeneous catalysis. Bench-scale tests suggest that the optimum temperature for PCDD and PCDF formation in the presence of fly ash is roughly 300°C. [Pg.53]

Diffusivity and tortuosity affect resistance to diffusion caused by collision with other molecules (bulk diffusion) or by collision with the walls of the pore (Knudsen diffusion). Actual diffusivity in common porous catalysts is intermediate between the two types. Measurements and correlations of diffusivities of both types are Known. Diffusion is expressed per unit cross section and unit thickness of the pellet. Diffusion rate through the pellet then depends on the porosity d and a tortuosity faclor 1 that accounts for increased resistance of crooked and varied-diameter pores. Effective diffusion coefficient is D ff = Empirical porosities range from 0.3 to 0.7, tortuosities from 2 to 7. In the absence of other information, Satterfield Heterogeneous Catalysis in Practice, McGraw-HiU, 1991) recommends taking d = 0.5 and T = 4. In this area, clearly, precision is not a feature. [Pg.2095]

Some work has also been achieved with heterogeneous catalysis. These catalysts include Amberlyst-15, Nafion-H, montmorillonite KSF clay, ferrihydrite silica gel aerogels containing 11-13% iron, silica sulfuric acid, and zeolites. ... [Pg.513]

Because diacetylene is unstable, a stable diacetylene derivative, 1-methoxybut-l-en-3-yne (65CB98), is often employed in the synthesis of pyrroles. The reaction with ammonia proceeds under conditions of heterogeneous catalysis (a mixture of reagent vapors is passed through a catalyst-containing reactor heated to 150°C), approaching a yield of 50-70% but with primary aromatic amines, the yield drops to 20%. [Pg.159]

Biphasic catalysis in a liquid-liquid system is an ideal approach through which to combine the advantages of both homogeneous and heterogeneous catalysis. The reaction mixture consists of two immiscible solvents. Only one phase contains the catalyst, allowing easy product separation by simple decantation. The catalyst phase can be recycled without any further treatment. However, the right combination of catalyst, catalyst solvent, and product is crucial for the success of biphasic catalysis [22]. The catalyst solvent has to provide excellent solubility for the catalyst complex without competing with the reaction substrate for the free coordination sites at the catalytic center. [Pg.219]

This type of co-catalytic influence is well loiown in heterogeneous catalysis, in which for some reactions an acidic support will activate a metal catalyst more efficiently than a neutral support. In this respect, the acidic ionic liquid can be considered as a liquid acidic support for the transition metal catalysts dissolved in it. [Pg.222]

One problem with heterogeneous catalysis is that the solid catalyst is easily poisoned. Foreign materials deposited on the catalytic surface during the reaction reduce or even destroy its effectiveness. A major reason for using unleaded gasoline is that lead metal poisons the Pt-Rh mixture in the catalytic converter. [Pg.306]

The study of catalytic polymerization of olefins performed up to the present time is certain to hold a particular influence over the progress of the concepts of the coordination mechanism of heterogeneous catalysis. With such an approach the elementary acts of catalytic reaction are considered to proceed in the coordination sphere of one ion of the transition element and, to a first approximation, the collective features of solids are not taken into account. It is not surprising that polymerization by Ziegler-Natta catalysts is often considered together with the processes of homogeneous catalysis. [Pg.213]

Wagner was first to propose the use of solid electrolytes to measure in situ the thermodynamic activity of oxygen on metal catalysts.17 This led to the technique of solid electrolyte potentiometry.18 Huggins, Mason and Giir were the first to use solid electrolyte cells to carry out electrocatalytic reactions such as NO decomposition.19,20 The use of solid electrolyte cells for chemical cogeneration , that is, for the simultaneous production of electrical power and industrial chemicals, was first demonstrated in 1980.21 The first non-Faradaic enhancement in heterogeneous catalysis was reported in 1981 for the case of ethylene epoxidation on Ag electrodes,2 3 but it was only... [Pg.7]

Figure 1.6. Common features of Heterogeneous Catalysis, Fuel Cell operation, Electrolysis and Electrochemical Promotion 1. Solid state catalyst, 2. Adsorption, 3. AG < 0, 4. Yield control via DC current or voltage application (Adapted from N. A. Anastasijevic). Figure 1.6. Common features of Heterogeneous Catalysis, Fuel Cell operation, Electrolysis and Electrochemical Promotion 1. Solid state catalyst, 2. Adsorption, 3. AG < 0, 4. Yield control via DC current or voltage application (Adapted from N. A. Anastasijevic).
Chapter 7 introduces the concept of absolute electrode potential in solid state electrochemistry. This concept has some important implications not only in solid state electrochemistry but also, potentially, in heterogeneous catalysis of supported catalysts. [Pg.11]

Normally in heterogeneous catalysis compensation effect behaviour is obtained either for the same reaction upon using differently prepared catalysts of the same type, or with the same catalyst upon using a homologous set of reactants. In the case of electrochemical promotion (Figs. 4.38 and 4.39) one has the same catalyst and the same reaction but various potentials, i.e. various amounts of promoter on the catalyst surface. [Pg.166]

Consequently the absolute potential is a material property which can be used to characterize solid electrolyte materials, several of which, as discussed in Chapter 11, are used increasingly in recent years as high surface area catalyst supports. This in turn implies that the Fermi level of dispersed metal catalysts supported on such carriers will be pinned to the Fermi level (or absolute potential) of the carrier (support). As discussed in Chapter 11 this is intimately related to the effect of metal-support interactions, which is of central importance in heterogeneous catalysis. [Pg.358]

Several aluminum- and titanium-based compounds have been supported on silica and alumina [53]. Although silica and alumina themselves catalyze cycloaddition reactions, their catalytic activity is greatly increased when they complex a Lewis acid. Some of these catalysts are among the most active described to date for heterogeneous catalysis of the Diels-Alder reactions of carbonyl-containing dienophiles. The Si02-Et2AlCl catalyst is the most efficient and can be... [Pg.115]


See other pages where Catalyst heterogeneous catalysis is mentioned: [Pg.233]    [Pg.342]    [Pg.366]    [Pg.108]    [Pg.233]    [Pg.342]    [Pg.366]    [Pg.108]    [Pg.14]    [Pg.202]    [Pg.265]    [Pg.106]    [Pg.160]    [Pg.200]    [Pg.205]    [Pg.2094]    [Pg.13]    [Pg.74]    [Pg.253]    [Pg.253]    [Pg.258]    [Pg.288]    [Pg.556]    [Pg.161]    [Pg.44]    [Pg.2]    [Pg.10]    [Pg.15]    [Pg.489]    [Pg.19]    [Pg.109]    [Pg.413]    [Pg.457]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Catalysis heterogenized

Catalysis heterogenous

Catalysis, heterogenic

Catalyst Concepts in Heterogeneous Catalysis

Catalyst heterogenous catalysis

Catalysts catalysis

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Enantioselective heterogeneous catalysis catalysts

Enantioselective heterogeneous catalysis enzyme catalysts

Heterogeneous Catalysis 4 Nanoparticle-Based Catalysts

Heterogeneous Catalysis Kinetics in Porous Catalyst Particles

Heterogeneous asymmetric catalysis catalyst

Heterogeneous asymmetric catalysis chirally modified catalysts

Heterogeneous asymmetric catalysis inorganic catalysts

Heterogeneous asymmetric catalysis organic catalysts

Heterogeneous asymmetric catalysis solid catalysts

Heterogeneous catalysis

Heterogeneous catalysis active catalysts

Heterogeneous catalysis bifunctional catalysts

Heterogeneous catalysis catalyst types

Heterogeneous catalysis metallic catalysts

Heterogeneous catalysis mixed catalysts

Heterogeneous catalysis selective catalysts

Heterogeneous catalysis supported metal catalysts

Heterogeneous catalysis zeolite catalysts

Heterogeneous catalysis zeolites as catalysts

Heterogenized catalysts

Homogeneous catalysis heterogeneous catalyst)

Solid catalysts zeolite heterogeneous catalysis

© 2024 chempedia.info