Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalysis zeolite catalysts

Some work has also been achieved with heterogeneous catalysis. These catalysts include Amberlyst-15, Nafion-H, montmorillonite KSF clay, ferrihydrite silica gel aerogels containing 11-13% iron, silica sulfuric acid, and zeolites. ... [Pg.513]

Microporosity is a feature observed in many different materials (e g., activated carbons, aerogels, and xerogels). However, with regard to heterogeneous catalysis, zeolites are practically the only microporous catalysts used at present. The following chapter thus only addresses zeolites and their use in catalysis. [Pg.97]

Zeolites form a unique class of oxides, consisting of microporous, crystalline aluminosilicates that can either be found in nature or synthesized artificially [J.M. Thomas, R.G. Bell and C.R.A. Catlow in Handbook of Heterogeneous Catalysis (Ed. G. Ertl, H. Knbzinger and J. Weitkamp) (1997), Vol. 1, p. 206, VCH, Weinheim.]. The zeolite framework is very open and contains channels and cages where cations, water and adsorbed molecules may reside and react. The specific absorption properties of zeolites are used in detergents, toothpaste, and desiccants, whereas their acidity makes them attractive catalysts. [Pg.199]

Zeolites. In heterogeneous catalysis porosity is nearly always of essential importance. In most cases porous materials are synthesized using the above de.scribed sol-gel techniques resulting in so-called amorphous catalysts. Porosity is introduced in the agglomeration process in which the sol is transformed into a gel. From X-ray Diffraction patterns it is clear that the material shows only weak broad lines, characteristic of non-crystalline materials. Silica and alumina are typical examples. Zeolites are an exception they are crystalline materials but nevertheless exhibit high (micro) porosity. Zeolites belong to the class of molecular sieves, which are porous solids with pores of molecular dimensions, i.e., typically the pore diameter ranges from 0.3 to 10 nm. Examples of molecular sieves are carbons, oxides and zeolites. [Pg.76]

One of the exciting results to come out of heterogeneous catalysis research since the early 1980s is the discovery and development of catalysts that employ hydrogen peroxide to selectively oxidize organic compounds at low temperatures in the liquid phase. These catalysts are based on titanium, and the important discovery was a way to isolate titanium in framework locations of the inner cavities of zeolites (molecular sieves). Thus, mild oxidations may be run in water or water-soluble solvents. Practicing organic chemists now have a way to catalytically oxidize benzene to phenols alkanes to alcohols and ketones primary alcohols to aldehydes, acids, esters, and acetals secondary alcohols to ketones primary amines to oximes secondary amines to hydroxyl-amines and tertiary amines to amine oxides. [Pg.229]

In this chapter, we demonstrate the potential of such agents as catalysts/promoters in key steps for the derivatization of sugars. The most significant catalytic approaches in carbohydrate chemistry that use aluminosilicate porous materials, namely zeolites and montmorillonite clays, are reviewed and discussed. Silica gel is a porous solid silicate that has also been used for heterogeneous catalysis of organic reactions in general. We include here its usefulness as promoter and reagent support for the reactions under consideration. [Pg.30]

Another example of heterogeneous catalysis by oxo-ions is the one-step oxidation of benzene to phenol with nitrous oxide, N2O. Fe/MFI catalysts have, again been found to be very active. This catalysis was discovered by Iwamoto and has been extensively studied by the group of G. Panov in Novosibirsk. " Preparations of Fe/MFI which appear highly active for this reaction display poor activity for NOj reduction and those which are optimum for that process, are poor for benzene oxidation. This shows that different sites are used. Work by Jia et al. revealed that the active sites for benzene oxidation appear to be Fe-oxo-ions containing only one Fe ion. This does not necessarily mean that the sites are mononuclear. A recent work by Zhu et al. has rather suggested that the site consists of one Fe and one Al + ion, the latter ion having left the zeolite framework. ... [Pg.149]

Application of transmission electron microscopy (TEM) techniques on heterogeneous catalysis covers a wide range of solid catalysts, including supported metal particles, transition metal oxides, zeolites and carbon nanotubes and nanofibers etc. [Pg.474]

As the Beckmann rearrangement is believed to be a typical acid-catalysed reaction, many researchers have reported the relationship between the vapour phase reaction catalysis and the acidity of the catalysts tested on non-zeolitic catalysts - i2s- i3i. 318-334 and on zeolitic catalysts Another interesting point for the heterogeneous gas-phase Beckmann rearrangement is the location of the reaction on the catalyst and different studies have been published ° . The outer surface of the catalyst particle seems to be the most probable place for the Beckmann rearrangement supported by the traces of reagents, and notable amounts of by-products found only in the outer layers of the zeolite crystal. Development of new and more efficient catalysts have also been reported " . ... [Pg.472]

In view of the breadth of NMR spectroscopy in heterogeneous catalysis, no attempt has been made in this review to cover the field comprehensively the reader is directed to other reviews for complementary information (7-P). This review is focused on zeolite catalysts, in part because of their crystalline structures and in part because of their widespread use in industrial catalysis. [Pg.151]

Tlhe importance of zeolites in research on heterogeneous catalysis is A based mainly on the fact that the structure of the active surface is a defined part of the crystal structure and does not represent a more or less severe lattice defect as most catalyst surfaces do. The crystal structure, and therefore the structure of the zeolite surface, can be determined by x-ray diffraction. Knowledge of this structure allows the construction of simple models of the distribution of electric fields in the holes of the zeolite by which wide ranges of experimental results can be explained, as is shown by the pioneering work of Barrer 1-5) and Kiselev 6-9) on calculation of the heats of adsorption of various substances. [Pg.81]

These heterogeneous catalysis contain nickel, cobalt, molybdenum, tungsten, platinum, or palladium on acidic aluminum silicate or zeolite supports. As with reforming catalysts, the catalysts here are also believed to be... [Pg.305]

Our current interest in the development of heterogeneous catalysis led us to consider the use of such zeolites as catalysts in the hydration reaction of C =C and C = N triple bonds in liquid phase. [Pg.565]

The three themes of the symposium selective hydrogenation, selective oxidation and acid-base catalysis were introduced by four plenary lectures and two invited communications. A panel concerned with the future of zeolites and other shape-selective materials for fine chemical synthesis was conducted by specialists in the field D. Barthomeuf (University of Paris 6), E. Derouane (University of Namur), L. Forni (University of Milan), M. Gubelmann (Rhone-Poulenc, St Fons), W. Hoelderich (BASF, Ludwigshafen) and G. Perot (University of Poitiers). An exhibition of equipment was held during the symposium on October 3 and 4. Over 20 firms exhibited equipment, chemicals and catalysts which were of interest to researchers involved with the synthesis of functional compounds by heterogeneous catalysis. [Pg.622]

Zeolite catalysts may also be regarded as mixed oxides, but the crystallographic structures differ from the solids discussed above in that active sites for catalysis occur within the open lattice framework. In consequence, rate data are not directly comparable with similar observations for other heterogeneous reactions since the preexponential factors are calculated and reported on a different basis. For completeness, however, it is appropriate to mention here that instances of compensation behavior on zeolite catalysts are known. Taylor and Walker (282) described such an effect for the decomposition reactions of formic acid and of methyl forma te on cation-exchanged 13X molecular sieves, and comparable trends may be found in data reported for reactions of propene on similar catalysts (283). [Pg.303]

In microporous supports or zeolites, catalyst immobilization is possible by steric inclusion or entrapment of the active transition metal complex. As catalyst retention requires the encapsulation of a relatively large complex into cages only accessible through windows of molecular dimensions, the term ship-in-a-bottle has been coined for this methodology. Intrinsically, the size of the window not only determines the retention of the complex, but also limits the substrate size that can be used. The sensitivity to diffusion limitations of zeolite-based catalysis remains unchanged with the ship-in-a-bottle approach. In many cases, complex deformation upon heterogenization may occur. [Pg.209]


See other pages where Heterogeneous catalysis zeolite catalysts is mentioned: [Pg.5]    [Pg.257]    [Pg.4]    [Pg.189]    [Pg.73]    [Pg.361]    [Pg.8]    [Pg.9]    [Pg.357]    [Pg.345]    [Pg.19]    [Pg.67]    [Pg.243]    [Pg.719]    [Pg.201]    [Pg.335]    [Pg.2]    [Pg.517]    [Pg.467]    [Pg.537]    [Pg.773]    [Pg.851]    [Pg.52]    [Pg.254]    [Pg.86]    [Pg.285]    [Pg.325]    [Pg.328]    [Pg.617]    [Pg.16]    [Pg.237]    [Pg.40]    [Pg.126]    [Pg.1]   
See also in sourсe #XX -- [ Pg.165 , Pg.166 , Pg.167 , Pg.168 , Pg.169 ]




SEARCH



Catalysis heterogenized

Catalysis heterogenous

Catalysis, heterogenic

Catalysts catalysis

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Catalysts zeolitic

Heterogeneous catalysis

Heterogeneous catalysis catalyst

Heterogeneous catalysis zeolites as catalysts

Heterogeneous zeolites

Heterogenized catalysts

Solid catalysts zeolite heterogeneous catalysis

Zeolite catalyst

© 2024 chempedia.info