Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterodyne spectroscopy technique

The literature [61,63-82] r rs to QELS by many differoit names, some of which are spediic methods of implemratation. The.se include dynamic light scattering, laser scattering, laser Doppler velocimeby, intensity fluctuation spectroscopy, photon correlation spectroscopy (PCS), light beating spectroscopy and homo- and heterodyne spectroscopy. Most of the techniques discussed here are based on PCS. [Pg.217]

In many technical problems in hydrodynamics or aerodynamics, the velocity profile v(r,t) of a flowing medium in pipes or around solid bodies is of great importance. Doppler anemometry (Sect. 7.12) is a heterodyne laser spectroscopy technique where these velocity profiles are determined from the measured Doppler shifts of the scattered light [1503-1505]. The beam of a HeNe or Ar laser with wave vector A l passes through a volume element dV of the flowing medium. The frequency co of light scattered in the direction ks by particles with velocity v (Fig. 10.34) is Doppler-shifted to... [Pg.625]

The description of pump-probe signals presented in the preceding section can be immediately generalized to heterodyne-detected transient grating spectroscopy as well as to other four-wave mixing techniques. Heterodyne detection involves mixing the scattered field with an additional heterodyne field 4(r). The signal in the ks direction can then be written in terms of the polarization Ts(t) as... [Pg.358]

In Florence, we have chosen an approach that combines laser spectroscopy with the direct frequency measures of the microwave experiments [4]. We take advantage of the obvious consideration that to obtain the FS separations there s no need to precisely know the optical transitions frequencies but just their differences. Thus, if we have two laser frequencies whose difference can be accurately controlled, we may use one as a fixed reference and tune the second across the atomic resonances, as illustrated by Fig. 1. In fact, our approach reverts to an heterodyne technique, where all the transitions are measured with respect to the same reference frequency, that can take any arbitrary but stable value. In the experimental realisation we obtain the two frequencies by phase-locking two diode lasers (master and slave), i.e. phase-locking their beat note to a microwave oscillator [14]. We show in Fig 2 a full-view of the experimental set-up. [Pg.317]

We shall conclude this chapter with a few speculative remarks on possible future developments of nonlinear IR spectroscopy on peptides and proteins. Up to now, we have demonstrated a detailed relationship between the known structure of a few model peptides and the excitonic system of coupled amide I vibrations and have proven the correctness of the excitonic coupling model (at least in principle). We have demonstrated two realizations of 2D-IR spectroscopy a frequency domain (incoherent) technique (Section IV.C) and a form of semi-impulsive method (Section IV.E), which from the experimental viewpoint is extremely simple. Other 2D methods, proposed recently by Mukamel and coworkers (47), would not pose any additional experimental difficulty. In the case of NMR, time domain Fourier transform (FT) methods have proven to be more sensitive by far as a result of the multiplex advantage, which compensates for the small population differences of spin transitions at room temperature. It was recently demonstrated that FT methods are just as advantageous in the infrared regime, although one has to measure electric fields rather than intensities, which cannot be done directly by an electric field detector but requires heterodyned echoes or spectral interferometry (146). Future work will have to explore which experimental technique is most powerful and reliable. [Pg.348]

In a 2D three-pulse spectroscopy, two of the three pulses are time-coincident and differ only by their wave vector. The system thus interacts once with a single pulse and twice with a pulse pair. In the 2D photon echo technique we set t2 = 0. We consider the heterodyne signal [Equation (10)]. This... [Pg.376]

The following section contains a more detailed treatment of the theory behind the nonresonant spectroscopy of liquids. This will be followed by a description of the experimental implementation and data analysis techniques for a common OKE scheme, optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy (22). We will then discuss the application of this technique to the study of the temperature-dependent dynamics of simple liquids composed of symmetric-top molecules. [Pg.486]

According to the literature, narrow band detection in the THz regime often involves heterodyne techniques or Fourier transform spectroscopy, both of which require exotic supplementary hardware. " Our tuned detector involves just a few modifications to the... [Pg.156]

In this contribution we present two laser spectroscopic methods that use coherent resonance Raman scattering to detect rf-or laser -induced Hertzian coherence phenomena in the gas phase these novel coherent double resonance techniques for optical heterodyne detection of sublevel coherence clearly extend the above mentioned previous methods using incoherent light sources. In the case of Doppler broadened optical transitions new signal features appear as a result of velocity-selective optical excitation caused by the narrow-bandwidth laser. We especially analyze the potential and the limitations of the new detection schemes for the study of collision effects in double resonance spectroscopy. In particular, the effect of collisional velocity changes on the Hertzian resonances will be investigated. [Pg.176]

Besides various detection mechanisms (e.g. stimulated emission or ionization), there exist moreover numerous possible detection schemes. For example, we may either directly detect the emitted polarization (oc PP, so-called homodyne detection), thus measuring the decay of the electronic coherence via the photon-echo effect, or we may employ a heterodyne detection scheme (oc EP ), thus monitoring the time evolution of the electronic populations In the ground and excited electronic states via resonance Raman and stimulated emission processes. Furthermore, one may use polarization-sensitive detection techniques (transient birefringence and dichroism spectroscopy ), employ frequency-integrated (see, e.g. Ref. 53) or dispersed (see, e.g. Ref. 54) detection of the emission, and use laser fields with definite phase relation. On top of that, there are modern coherent multi-pulse techniques, which combine several of the above mentioned options. For example, phase-locked heterodyne-detected four-pulse photon-echo experiments make it possible to monitor all three time evolutions inherent to the third-order polarization, namely, the electronic coherence decay induced by the pump field, the djmamics of the system occurring after the preparation by the pump, and the electronic coherence decay induced by the probe field. For a theoretical survey of the various spectroscopic detection schemes, see Ref. 10. [Pg.744]

In the following we summarize several publications where heterodyne techniques were combined with various photon echo schemes in one or the other way, and were utilized for high-resolution spectroscopy in crystals. These subjects could have also been inserted in Section 7. [Pg.37]

Spectroscopy utilizing tunable laser and microwave sources has been applied widely in exploring atoms, molecules, and condensed matter. Besides the classical areas of optical double resonance and optical pumping the extension of these or related methods to difference frequency measurements in the optical range seems to be of increasing importance. This includes heterodyne techniques. Laser microwave schemes can also play an essential role for the generation of modem frequen( standards. Last but not least, there will be many technical applications like infrared detectors, wavemeters, magnetometers, etc. [Pg.66]

New absorption methods, like intracavity spectroscopy, cavity-ring-down and cavity-enhanced spectroscopy, have demonstrated very high sensitivities in laboratory measurements with DLs. An ultrasensitive technique that combines external cavity enhancement and FM spectroscopy has been developed recently. This method, which has been called NICE-OHMS. or noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, is based on frequency modulation of the laser at the cavity free-spectral-range frequency or its multiple. The MDA of 5x 10 1 X 10 cm ) in the detection of narrow... [Pg.745]

A new technique to measure low-frequency spectra is optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy (OHD-RIKES). A recent publication by Chang and Cast-ner contains references to previous work within this field [18]. OHD-RIKES is based on a four-wave mixing of femtosecond laser pulses. Spectra obtained by OHD-RIKES reflect the anisotropic part of the Raman polarizability. Thus, the information obtained by OHD-RIKES is very similar to that obtained by low-frequency Raman scattering in an scattering configuration. From a theoretical point of view, the spectral representation obtained from OHD-RIKES measurements corresponds to the I v) representation given in Eq. (3). In Fig. 4 is shown an OHD-RIKES spectrum of liquid A-methylformamide (NMF). In Fig. 5 are shown low-frequency Raman spectra of liquid NMF together with the R(i>),... [Pg.608]


See other pages where Heterodyne spectroscopy technique is mentioned: [Pg.494]    [Pg.1236]    [Pg.1244]    [Pg.83]    [Pg.612]    [Pg.153]    [Pg.266]    [Pg.41]    [Pg.289]    [Pg.365]    [Pg.3]    [Pg.4]    [Pg.19]    [Pg.266]    [Pg.164]    [Pg.378]    [Pg.613]    [Pg.229]    [Pg.289]    [Pg.613]    [Pg.229]    [Pg.289]    [Pg.234]    [Pg.90]    [Pg.95]   
See also in sourсe #XX -- [ Pg.312 ]




SEARCH



Heterodyne

Heterodyne spectroscopy

Heterodyne techniques

Spectroscopy techniques

© 2024 chempedia.info