Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction examples

Compared to very extensive studies on Heck reactions, examples of successful asymmetric Heck reactions (abbreviated to AHR in this section) are rather limited, showing that AHRs are not easy to carry out, and careful tuning of conditions is crucial. Most of the HRs proceed by using monodentate ligands. On the other hand, chiral bidentate ligands are mainly required for AHRs. This may be a reason for the difficulty in achieving efficient AHRs. The ligands most extensively used are BINAP, its derivatives, and phosphinooxazolines [116]. [Pg.148]

It should also be noted that various sources of palladium are given in the examples. The active oxidation state is Pd(0) in all these reactions, even when the source is Pd as in the Heck reaction example that uses palladium acetate. [Pg.596]

Aryl, heteroaryl (62) and vinyl (49,50,63) triflates readily participate in the Heck reaction. Examples are shown in equations 16 (62) and 17(49). [Pg.10]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Due to their successful synthesis of 2-(4 -chlorophenyl)-4-iodoquinoline from the corresponding precursor acetylene, Arcadi et al. (99T13233) developed a one-step synthesis of 2,4-disubstituted quinolines via palladium-catalyzed coupling reactions. An example is the Heck reaction of 4-iodoquinoline (131) with a-acetamidoacrylate (132). This one-pot synthesis yielded adduct 133 in 50% overall yield after purification via flash chromatography. [Pg.22]

For the performance of an enantioselective synthesis, it is of advantage when an asymmetric catalyst can be employed instead of a chiral reagent or auxiliary in stoichiometric amounts. The valuable enantiomerically pure substance is then required in small amounts only. For the Fleck reaction, catalytically active asymmetric substances have been developed. An illustrative example is the synthesis of the tricyclic compound 17, which represents a versatile synthetic intermediate for the synthesis of diterpenes. Instead of an aryl halide, a trifluoromethanesul-fonic acid arylester (ArOTf) 16 is used as the starting material. With the use of the / -enantiomer of 2,2 -Z7w-(diphenylphosphino)-l,F-binaphthyl ((R)-BINAP) as catalyst, the Heck reaction becomes regio- and face-selective. The reaction occurs preferentially at the trisubstituted double bond b, leading to the tricyclic product 17 with 95% ee. °... [Pg.157]

This reaction also represents an example of the intramolecular Heck reaction, a variant that has gained some importance in recent years. Another instructive example of the potential of this reaction for the construction of ring systems has been reported by de Meijere and coworkers, taking advantage of a sequence of four consecutive intramolecular Heck reactions. The bromodiene-yne 18 reacts in a sequence of domino reactions within 3 d at 80 °C under Heck conditions to give the tetracyclic product 19 in 74% yield ... [Pg.157]

Many organic chemical transformations have been carried out in ionic liquids hydrogenation [4, 5], oxidation [6], epoxidation [7], and hydroformylation [8] reactions, for example. In addition to these processes, numerous synthetic routes involve a carbon-carbon (C-C) bond-forming step. As a result, many C-C bondforming procedures have been studied in ambient-temperature ionic liquids. Among those reported are the Friedel-Crafts acylation [9] and allcylation [10] reactions, allylation reactions [11, 12], the Diels-Alder reaction [13], the Heck reaction [14], and the Suzuld [15] and Trost-Tsuji coupling [16] reactions. [Pg.319]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]

In 1996, the first examples of intermolecular microwave-assisted Heck reactions were published [85]. Among these, the successful coupling of iodoben-zene with 2,3-dihydrofuran in only 6 min was reported (Scheme 75). Interestingly, thermal heating procedures (125-150 °C) resulted in the formation of complex product mixtures affording less than 20% of the expected 2-phenyl-2,3-dihydrofuran. The authors hypothesize that this difference is the result of well-known advantages of microwave irradiation, e.g., elimination of wall effects and low thermal gradients in the reaction mixture. [Pg.194]

The Pd-catalysed Heck reaction performed with thiourea as the Ugand exhibit good activities for some catalysts. As for carbene ligands [104], steric hindrance improves catalytic results. Thus, thioureas wearing bulky substituents afford the formation of air- and moisture-stable Pd complexes [105]. For example, the catalyst obtained with 2mol% Pd(dba)2 and Ar,M -dimesitylene-ethylene thiourea (Scheme 24) was still active even after 2 months in an air atmosphere. [Pg.248]

This method ensures the deposition of very reactive metal nanoparticles that require no activation steps before use. We shall review here the following examples of catalytic reactions that are of interest in line chemical synthesis (a) the hydrogenation of substituted arenes, (b) the selective hydrogenation of a, 3-unsaturated carbonyl compounds, (c) the arylation of alkenes with aryl halides (Heck reaction). The efficiency and selectivity of commercial catalysts and of differently prepared nanosized metal systems will be compared. [Pg.439]

The regiochemistry of the Heck reaction is determined by the competitive removal of the (3-proton in the elimination step. Mixtures are usually obtained if more than one type of (3-hydrogen is present. Often there is also double-bond migration that occurs by reversible Pd-H elimination-addition sequences. For example, the reaction of cyclopentene with bromobenzene leads to all three possible double-bond isomers.146... [Pg.719]

The Heck reaction has been applied to synthesis of intermediates and in multistage syntheses. Some examples are given in Scheme 8.9. Entries 1 and 2 illustrate both the (3-regioselectivity and selectivity for aryl iodides over bromides. Entries 3 and 4 show conditions that proved favorable for cyclohexene. These examples also indicate preferential syn Pd-H elimination, since this accounts for formation of the 3-substituted cyclohexene as the major product. [Pg.720]

There are numerous examples of intramolecular Heck reactions,151 such as in Entries 10 to 14. Entry 11 is part of a synthesis of the antitumor agent camptothecin. The Heck reaction gives an 11 1 endocyclic-exocyclic mixture. Entries 12-14 are also steps in syntheses of biologically active substances. Entry 12 is part of a synthesis of maritidine, an alkaloid with cytotoxic properties the reaction in Entry 13 is on a route to galanthamine, a potential candidate for treatment of Alzheimer s disease and Entry 14 is a key step in the synthesis of a potent antitumor agent isolated from a marine organism. [Pg.723]

Phosphine ligands based on the ferrocene backbone are very efficient in many palladium-catalyzed reactions, e.g., cross-coupling reactions,248 Heck reaction,249 amination reaction,250 and enantioselective synthesis.251 A particularly interesting example of an unusual coordination mode of the l,l -bis(diphenylphosphino)ferrocene (dppf) ligand has been reported. Dicationic palladium(II) complexes, such as [(dppf)Pd(PPh3)]2+[BF4 ]2, were shown to contain a palladium-iron bond.252,253 Palladium-iron bonds occur also in monocationic methyl and acylpalladium(II) complexes.254 A palladium-iron interaction is favored by bulky alkyl substituents on phosphorus and a lower electron density at palladium. [Pg.575]

The Heck reaction has proven to be an extremely useful method for the formation of C-C bond at a vinyl carbon centre. There are numerous reported examples of enantioselctive Pd catalyzed C-C bond forming reactions.10"13 Surprisingly, reports of Heck transformations using amino acid based phosphine, phosphinite ligands are rare. Recently Gilbertson reported a proline derived phosphine-oxozoline ligand in a catalytic asymmetric Heck reaction.5 In this paper we present some novel amino acids derived ligands as part of a catalytic system for use in asymmetric Heck reactions. [Pg.519]

Palladium-catalyzed carbon-carbon cross-coupling reactions are among the best studied reactions in recent decades since their discovery [102, 127-130], These processes involve molecular Pd complexes, and also palladium salts and ligand-free approaches, where palladium(O) species act as catalytically active species [131-135]. For example, the Heck reaction with aryl iodides or bromides is promoted by a plethora of Pd(II) and Pd(0) sources [128, 130], At least in the case of ligand-free palladium sources, the involvement of soluble Pd NPs as a reservoir for catalytically active species seems very plausible [136-138], Noteworthy, it is generally accepted that the true catalyst in the reactions catalyzed by Pd(0) NPs is probably molecular zerovalent species detached from the NP surface that enter the main catalytic cycle and subsequently agglomerate as N Ps or even as bulk metal. [Pg.17]

For example, the Mizoroki-Heck reaction consists of the reaction of an unsaturated halide with alkenes under basic conditions catalyzed by a Pd source dissolved in... [Pg.17]

Transition metal-catalyzed transformations are of major importance in synthetic organic chemistry [1], This reflects also the increasing number of domino processes starting with such a reaction. In particular, Pd-catalyzed domino transformations have seen an astounding development over the past years with the Heck reaction [2] - the Pd-catalyzed transformation of aryl halides or triflates as well as of alkenyl halides or triflates with alkenes or alkynes - being used most often. This has been combined with another Heck reaction or a cross-coupling reaction [3] such as Suzuki, Stille, and Sonogashira reactions. Moreover, several examples have been published with a Tsuji-Trost reaction [lb, 4], a carbonylation, a pericyclic or an aldol reaction as the second step. [Pg.359]

Thus, an early example of two successive Heck reactions is the formation of the condensed bicyclic compound 6/1-7 from the acyclic precursor 6/1-6 by Overman... [Pg.360]

To date, only a few examples have been described where a Heck reaction has been combined with a Pd°-catalyzed nucleophilic substitution and the yields are less satisfying. However, the opposite variation - namely the combination of a Tsuji-Trost and a Heck reaction - has been used more often (see Section 6.1.3). [Pg.374]

The insertion of CO into an organic Pd species is a very common procedure, and may also form part of a domino process, for example, after a Heck reaction. [Pg.375]

Heck reactions can also be combined with anion capture processes, animations, metatheses, aldol and Michael reactions, and isomerizations. The anion capture process has also been widely used with other Pd-catalyzed transformations. Outstanding examples of many different combinations have been developed by Grigg and coworkers, though not all of them match the requirements of a domino process. All of these reactions will be detailed here, despite the fact the nature of these intermediate transformations would also have permitted their discussion in Chapter 2. [Pg.382]

Grigg and coworkers developed bimetallic domino reactions such as the electro-chemically driven Pd/Cr Nozaki-Hiyama-Kishi reaction [69], the Pd/In Barbier-type allylation [70], Heck/Tsuji-Trost reaction/1,3 dipolar cycloaddition [71], the Heck reaction/metathesis [72], and several other processes [73-75]. A first example for an anion capture approach, which was performed on solid phase, is the reaction of 6/1-134 and 6/1-135 in the presence of CO and piperidine to give 6/1-136. Liberation from solid phase was achieved with HF, leading to 6/1-137 (Scheme 6/1.30) [76]. [Pg.382]

The latest example of a Pdn-catalyzed Wacker/Heck methodology was published by Rawal and coworkers. During the total synthesis of mycalamide A, an inter-molecular Wacker oxidation with methanol acting as nucleophile and a subsequent ring closure via Heck reaction led to a tetrahydropyran moiety in a 5.7 1 diastereom-eric mixture [184]. [Pg.422]

Silver salts are also employed to create more effective chiral catalysts by exchange of counter anions. For example, in the Mizoroki-Heck reaction of alkenyl or aryl halides, silver salts are employed to form effective chiral Pd intermediates by abstracting a halide group from the Pd11 precursor species (Scheme 53).227,228... [Pg.422]

Supported palladium catalysts for fine chemicals synthesis are generally based on metal particles. Nevertheless, a few examples are reported of the use of supported complexes as catalysts for the Heck reaction (see Chapter 9.6). Nearly all the possible immobilization methods have been tested for this reaction. [Pg.463]


See other pages where Heck reaction examples is mentioned: [Pg.44]    [Pg.143]    [Pg.338]    [Pg.931]    [Pg.248]    [Pg.160]    [Pg.124]    [Pg.162]    [Pg.203]    [Pg.303]    [Pg.263]    [Pg.233]    [Pg.241]    [Pg.369]    [Pg.195]    [Pg.19]    [Pg.26]    [Pg.6]    [Pg.360]    [Pg.398]   
See also in sourсe #XX -- [ Pg.721 ]

See also in sourсe #XX -- [ Pg.563 ]




SEARCH



Examples reaction

© 2024 chempedia.info