Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat capacity conductivity

The pharmaceutical industry has taken great interest of late in the study of polymorphism and solvatomorphism in its materials, since a strong interest in the phenomena has developed now that regulatory authorities understand that the nature of the structure adopted by a given compound upon crystallization can exert a profound effect on its solid-state properties. For a given material, the heat capacity, conductivity, volume, density, viscosity, surface tension, diffusivity, crystal... [Pg.263]

Lanthanides with fractional valences have II, III and IV valences, as well as mixed II/III and III/IV valences. Depending on temperature and pressure, the degree of oxidation can change. This effect may result in a change in the different properties of nanoparticles, such as the stability, heat capacity, conductivity and magnetic susceptibility [218]. Valence fluctuation phenomena have been reported to occur... [Pg.255]

Because of the rapidly growing number of reactions which can be carried out in supercritical fluids, there is an increasing demand for in situ techniques to monitor the course of chemical syntheses in these reaction media. There is a growing need to have efficient analytical techniques in order to determine chemical properties (like concentration and chemical species), physicochemical parameters (Uke heat capacities, conductivity, density, refractive index, and solu-bihty), thermodynamical information (like phase behavior and boundaries, partitioning, and critical points) and/or engineering information (like transfer phenomena, mixing, and scale-up). [Pg.82]

Other types of materials that lend themselves to TA investigation are electronic materials - with particular emphasis on the use of thermomechanical and thermoelectrical techniques. Heat capacity, conductivity, capacitance, dielectric phenomena, and structural morphology are all key features that can be studied using TA techniques. [Pg.4754]

Mold materials Density P kg/dm Specific Thermal heat capacity conductivity Cp X 20°C J/(gk) W/(mK) Modulus of Elasticity e N/mm Tensile strength Rr. N/mm ... [Pg.149]

Standard flow simulation software predicts the general heat balance within injection molds having in mind one fixed thermal value for both heat capacity, conductivity and density of mold materials. The analysis of the thermal characteristics of conventional and RT mold steels have proven that it is important to involve temperature dependant values. This is one of the main reasons why common used flow simulation software is not accurate enough. Fixed thermal values result in a misunderstanding of e.g. hot and cold spots within the mold. By this way, optimization of the heat balance is not possible. [Pg.1558]

This definition is in terms of a pool of liquid of depth h, where z is distance normal to the surface and ti and k are the liquid viscosity and thermal diffusivity, respectively [58]. (Thermal diffusivity is defined as the coefficient of thermal conductivity divided by density and by heat capacity per unit mass.) The critical Ma value for a system to show Marangoni instability is around 50-100. [Pg.112]

Another important accomplislnnent of the free electron model concerns tire heat capacity of a metal. At low temperatures, the heat capacity of a metal goes linearly with the temperature and vanishes at absolute zero. This behaviour is in contrast with classical statistical mechanics. According to classical theories, the equipartition theory predicts that a free particle should have a heat capacity of where is the Boltzmann constant. An ideal gas has a heat capacity consistent with tliis value. The electrical conductivity of a metal suggests that the conduction electrons behave like free particles and might also have a heat capacity of 3/fg,... [Pg.128]

The most direct effect of defects on tire properties of a material usually derive from altered ionic conductivity and diffusion properties. So-called superionic conductors materials which have an ionic conductivity comparable to that of molten salts. This h conductivity is due to the presence of defects, which can be introduced thermally or the presence of impurities. Diffusion affects important processes such as corrosion z catalysis. The specific heat capacity is also affected near the melting temperature the h capacity of a defective material is higher than for the equivalent ideal crystal. This refle the fact that the creation of defects is enthalpically unfavourable but is more than comp sated for by the increase in entropy, so leading to an overall decrease in the free energy... [Pg.639]

The glass-transition temperature, T, of dry polyester is approximately 70°C and is slightly reduced ia water. The glass-transitioa temperatures of copolyesters are affected by both the amouat and chemical nature of the comonomer (32,47). Other thermal properties, including heat capacity and thermal conductivity, depend on the state of the polymer and are summarized ia Table 2. [Pg.327]

Some physical properties, such as heat capacity and thermal conductivity, are difficult to measure accurately at higher temperatures and error as great as 20% are common. For critical appHcations, consult the heat-transfer fluid manufacturer concerning methods that were employed for these measurements. [Pg.508]

Gaseous helium is commonly used as the working fluid ia closed-cycle cryogenic refrigerators because of chemical iaertness, nearly ideal behavior at all but the lowest temperatures, high heat capacity per unit mass, low viscosity, and high thermal conductivity. [Pg.16]

Because it was not possible to explain the differences in the effectiveness of hydrogen as compared to other gases on the basis of differences in their physical properties, ie, thermal conductivity, diffusivity, or heat capacity differences, their chemical properties were explored. To differentiate between the hydrogen atoms in the C2H2 molecules and those injected as the quench, deuterium gas was used as the quench. The data showed that although 90% of the acetylene was recovered, over 99% of the acetylene molecules had exchanged atoms with the deuterium quench to form C2HD and... [Pg.383]

In this equation, is the gas thermal conductivity the Hquid density the Hquid heat capacity T, the gas temperature the initial droplet temperature and the droplet boiling point. [Pg.55]

The thermal conductivity of soHd iodine between 24.4 and 42.9°C has been found to remain practically constant at 0.004581 J/(cm-s-K) (33). Using the heat capacity data, the standard entropy of soHd iodine at 25°C has been evaluated as 116.81 J/ (mol-K), and that of the gaseous iodine at 25°C as 62.25 J/(mol-K), which compares satisfactorily with the 61.81 value calculated by statistical mechanics (34,35). [Pg.359]

Many of the common properties of isoprene have been presented graphically (9). These include vapor pressure, heat of vaporization, Hquid heat capacity, vapor heat capacity, Hquid density, vapor viscosity, Hquid viscosity, surface tension, and vapor thermal conductivity. [Pg.462]

Phonon transport is the main conduction mechanism below 300°C. Compositional effects are significant because the mean free phonon path is limited by the random glass stmcture. Estimates of the mean free phonon path in vitreous siUca, made using elastic wave velocity, heat capacity, and thermal conductivity data, generate a value of 520 pm, which is on the order of the dimensions of the SiO tetrahedron (151). Radiative conduction mechanisms can be significant at higher temperatures. [Pg.506]

Ultrasonic Spectroscopy. Information on size distribution maybe obtained from the attenuation of sound waves traveling through a particle dispersion. Two distinct approaches are being used to extract particle size data from the attenuation spectmm an empirical approach based on the Bouguer-Lambert-Beerlaw (63) and a more fundamental or first-principle approach (64—66). The first-principle approach implies that no caHbration is required, but certain physical constants of both phases, ie, speed of sound, density, thermal coefficient of expansion, heat capacity, thermal conductivity. [Pg.133]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

Thermal Conductivity and Heat Capacity. Most fibers have similar thermal conductivities and heat capacities. The insulating characteristics of textiles are more related to fabric geometry than they are dependent on fiber thermal characteristics. [Pg.457]

Vinyl acetate is a colorless, flammable Hquid having an initially pleasant odor which quickly becomes sharp and irritating. Table 1 Hsts the physical properties of the monomer. Information on properties, safety, and handling of vinyl acetate has been pubUshed (5—9). The vapor pressure, heat of vaporization, vapor heat capacity, Hquid heat capacity, Hquid density, vapor viscosity, Hquid viscosity, surface tension, vapor thermal conductivity, and Hquid thermal conductivity profile over temperature ranges have also been pubHshed (10). Table 2 (11) Hsts the solubiHty information for vinyl acetate. Unlike monomers such as styrene, vinyl acetate has a significant level of solubiHty in water which contributes to unique polymerization behavior. Vinyl acetate forms azeotropic mixtures (Table 3) (12). [Pg.458]

BeryUia ceramics offer the advantages of a unique combination of high thermal conductivity and heat capacity with high electrical resistivity (9). Thermal conductivity equals that of most metals at room temperature, beryUia has a thermal conductivity above that of pure aluminum and 75% that of copper. Properties Ulustrating the utUity of beryUia ceramics are shown in Table 2. [Pg.76]

The Group 4—6 carbides are thermodynamically very stable, exhibiting high heats of formation, great hardness, elevated melting points, and resistance to hydrolysis by weak acids. At the same time, these compounds have values of electrical conductivity. Hall coefficients, magnetic susceptibiUty, and heat capacity in the range of metals (7). [Pg.440]

K, have been tabulated (2). Also given are data for superheated carbon dioxide vapor from 228 to 923 K at pressures from 7 to 7,000 kPa (1—1,000 psi). A graphical presentation of heat of formation, free energy of formation, heat of vaporization, surface tension, vapor pressure, Hquid and vapor heat capacities, densities, viscosities, and thermal conductivities has been provided (3). CompressibiHty factors of carbon dioxide from 268 to 473 K and 1,400—69,000 kPa (203—10,000 psi) are available (4). [Pg.18]

Diagrams of isobaric heat capacity (C and thermal conductivity for carbon dioxide covering pressures from 0 to 13,800 kPa (0—2,000 psi) and 311 to 1088 K have been prepared. Viscosities at pressures of 100—10,000 kPa (1—100 atm) and temperatures from 311 to 1088 K have been plotted (9). [Pg.18]

In plasma chemical vapor deposition (PCVD), the starting materials are typically SiCl, O2, 2 6 GeCl (see Plasma technology). Plasma chemical vapor deposition is similar to MCVD in that the reactants are carried into a hoUow siUca tube, but PCVD uses a moving microwave cavity rather than a torch. The plasma formed inside the microwave cavity results in the deposition of a compact glass layer along the inner wall of the tube. The temperatures involved in PCVD are lower than those in MCVD, and no oxide soots are formed. Also, the PCVD method is not affected by the heat capacities or thermal conductivities of the deposits. [Pg.335]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]


See other pages where Heat capacity conductivity is mentioned: [Pg.400]    [Pg.3]    [Pg.8]    [Pg.201]    [Pg.549]    [Pg.400]    [Pg.3]    [Pg.8]    [Pg.201]    [Pg.549]    [Pg.1905]    [Pg.1916]    [Pg.163]    [Pg.214]    [Pg.55]    [Pg.460]    [Pg.57]    [Pg.470]    [Pg.130]    [Pg.476]    [Pg.436]    [Pg.506]    [Pg.509]    [Pg.201]    [Pg.411]    [Pg.474]   
See also in sourсe #XX -- [ Pg.497 ]




SEARCH



Conduction heating

Conductive heating

Heat Capacity, Thermal Conductivity and Pressure—Volume—Temperature of PLA

Heat conductance

Heat conduction

Heat conduction heal capacity

Heat conductive

Thermal Conductivity and Specific Heat Capacity

Thermal conductivity and heat capacity

© 2024 chempedia.info