Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree configuration interaction

A configuration interaction calculation uses molecular orbitals that have been optimized typically with a Hartree-Fock (FIF) calculation. Generalized valence bond (GVB) and multi-configuration self-consistent field (MCSCF) calculations can also be used as a starting point for a configuration interaction calculation. [Pg.217]

Atextbook describing the theory associated with calculations of the electronic structure of molecular systems. While the book focuses on ab initio calculations, much of the information is also relevant to semi-empirical methods. The sections on the Hartree-Fock and Configuration Interactions methods, in particular, apply to HyperChem. The self-paced exercises are useful for the beginning computational chemist. [Pg.4]

You can extend the calculation of the Hartree-Eock semi-empirical wave function by choosing Configuration Interaction (Cl) in the... [Pg.37]

Configuration Interaction (or electron correlation) adds to the single determinant of the Hartree-Fock wave function a linear combination of determinants that play the role of atomic orbitals. This is similar to constructing a molecular orbital as a linear combination of atomic orbitals. Like the LCAO approximation. Cl calculations determine the weighting of each determinant to produce the lowest energy ground state (see SCFTechnique on page 43). [Pg.38]

Configuration interaction (Cl) is a systematic procedure for going beyond the Hartree-Fock approximation. A different systematic approach for finding the correlation energy is perturbation theory... [Pg.236]

In the RISM-SCF theory, the statistical solvent distribution around the solute is determined by the electronic structure of the solute, whereas the electronic strucmre of the solute is influenced by the surrounding solvent distribution. Therefore, the ab initio MO calculation and the RISM equation must be solved in a self-consistent manner. It is noted that SCF (self-consistent field) applies not only to the electronic structure calculation but to the whole system, e.g., a self-consistent treatment of electronic structure and solvent distribution. The MO part of the method can be readily extended to the more sophisticated levels beyond Hartree-Fock (HF), such as configuration interaction (Cl) and coupled cluster (CC). [Pg.421]

Each cell in the chart defines a model chemistry. The columns correspond to differcni theoretical methods and the rows to different basis sets. The level of correlation increases as you move to the right across any row, with the Hartree-Fock method jI the extreme left (including no correlation), and the Full Configuration Interaction method at the right (which fuUy accounts for electron correlation). In general, computational cost and accuracy increase as you move to the right as well. The relative costs of different model chemistries for various job types is discussed in... [Pg.94]

A CASSCF calculation is a combination of an SCF computation with a full Configuration Interaction calculation involving a subset of the orbitals. The orbitals involved in the Cl are known as the active space. In this way, the CASSCF method optimizes the orbitals appropriately for the excited state. In contrast, the Cl-Singles method uses SCF orbitals for the excited state. Since Hartree-Fock orbitals are biased toward the ground state, a CASSCF description of the excited state electronic configuration is often an improvement. [Pg.228]

Configuration Interaction (Cl) methods begin by noting that the exact wavefunction 4 cannot be expressed as a single determinant, as Hartree-Fock theory assumes. Cl proceeds by constructing other determinants by replacing one or more occupied orbitals within the Hartree-Fock determinant with a virtual orbital. [Pg.265]

Practical configuration interaction methods augment the Hartree-Fock by adding only a limited set of substitutions, truncating the Cl expansion at some level of substitution. For example, the CIS method adds single excitations to the Hartree-Fock determinant, CID adds double excitations, CISD adds singles and doubles, CISDT adds singles, doubles, and triples, and so on. [Pg.267]

This is perhaps the easiest method to understand. It is based on the variational principle (Appendix B), analogous to the HF method. The trial wave function is written as a linear combination of determinants with the expansion coefficients determined by requiring that the energy should be a minimum (or at least stationary), a procedure known as Configuration Interaction (Cl). The MOs used for building the excited Slater determinants are taken from a Hartree-Fock calculation and held fixed. Subscripts S, D, T etc. indicate determinants which are singly, doubly, triply etc. excited relative to the... [Pg.101]

On the basis of the optimized ground-slate geometries, we simulate the absorption speetra by combining the scmicmpirical Hartree-Fock Intermediate Neglect of Differential Overlap (INDO) Hamiltonian to a Single Configuration Interaction... [Pg.372]

In addition, if one goes beyond the Hartree-Fock approximation to something like the configuration interaction approach there is an important sense in which one has gone beyond the picture of a certain number of electrons into a set of orbitals.10 If one insists on picturing this, then rather than just every electron being in eveiy possible orbital... [Pg.99]

Of course the Hartree-Fock method and the configuration interaction... [Pg.102]

Lowdin, P.-O., Phys. Rev. 97, 1474, 1490, 1509, Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals and convergence problems in the method of configuration interaction. II. Study of the ordinary Hartree-Fock approximation. III. Extension of the Har-tree-Fock scheme to include degenerate systems and correlation effects. ... [Pg.343]

The metric term Eq. (2.8) is important for all cases in which the manifold M has non-zero curvature and is thus nonlinear, e.g. in the cases of Time-Dependent Hartree-Fock (TDHF) and Time-Dependent Multi-Configurational Self-Consistent Field (TDMCSCF) c culations. In such situations the metric tensor varies from point to point and has a nontrivial effect on the time evolution. It plays the role of a time-dependent force (somewhat like the location-dependent gravitational force which arises in general relativity from the curvature of space-time). In the case of flat i.e. linear manifolds, as are found in Time-Dependent Configuration Interaction (TDCI) calculations, the metric is constant and does not have a significant effect on the dynamics. [Pg.223]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

Niu, S., Hall, M. B., 1997, Comparison of Hartree-Fock, Density Functional, Mpller-Plesset Perturbation, Coupled Cluster, and Configuration Interaction Methods for the Migratory Insertion of Nitric Oxide into a Cobalt-Carbon Bond , J. Phys. Chem. A, 101, 1360. [Pg.296]

Scott, A. P., Radom, L., 1996, Harmonic Vibrational Frequencies An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , J. Phys. Chem., 100, 16502. [Pg.300]

Multireference methods provide a straightforward way to treat excited states, since studying excited states requires the equivalent treatment of these states. Multireference methods are extensions of the single reference Hartree-Fock or configuration interaction (Cl) methods, where many configurations are used instead of a single configuration,... [Pg.290]


See other pages where Hartree configuration interaction is mentioned: [Pg.236]    [Pg.131]    [Pg.132]    [Pg.194]    [Pg.40]    [Pg.234]    [Pg.395]    [Pg.213]    [Pg.190]    [Pg.206]    [Pg.92]    [Pg.29]    [Pg.102]    [Pg.179]    [Pg.54]    [Pg.361]    [Pg.241]    [Pg.241]    [Pg.242]    [Pg.219]    [Pg.194]    [Pg.207]    [Pg.35]    [Pg.57]    [Pg.80]    [Pg.117]    [Pg.185]    [Pg.229]    [Pg.239]    [Pg.290]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Configuration Interaction

Configurational interaction

Hartree-Fock Intermediate Neglect Configuration Interaction

Hartree-Fock equations/theory configuration interaction

Restricted Hartree-Fock method configuration interaction

Unrestricted Hartree-Fock method configuration interaction

© 2024 chempedia.info