Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force time dependent

In lithography we bypass the implied conditions of Statement 2 by introducing a force/time dependent factor the ink is formulated to have high viscous resistance to flow. We can reconcile theory with lithographic fact by modifying Statement 2 to read ... [Pg.348]

The time-dependent Sclirodinger equation allows the precise detemiination of the wavefimctioii at any time t from knowledge of the wavefimctioii at some initial time, provided that the forces acting witiiin the system are known (these are required to construct the Hamiltonian). While this suggests that quaiitum mechanics has a detemihiistic component, it must be emphasized that it is not the observable system properties that evolve in a precisely specified way, but rather the probabilities associated with values that might be found for them in a measurement. [Pg.12]

Dan N 1996 Time-dependent effects in surface forces Current Opinion Colloid Interface Sol. 1 48-52... [Pg.1748]

The fluctuating forces F(t) on tire rigid oscillator D are characterized by a time-dependent force-force correlation Emotion [M, 55],... [Pg.3036]

In this minimal END approximation, the electronic basis functions are centered on the average nuclear positions, which are dynamical variables. In the limit of classical nuclei, these are conventional basis functions used in moleculai electronic structure theoiy, and they follow the dynamically changing nuclear positions. As can be seen from the equations of motion discussed above the evolution of the nuclear positions and momenta is governed by Newton-like equations with Hellman-Feynman forces, while the electronic dynamical variables are complex molecular orbital coefficients that follow equations that look like those of the time-dependent Hartree-Fock (TDHF) approximation [24]. The coupling terms in the dynamical metric are the well-known nonadiabatic terms due to the fact that the basis moves with the dynamically changing nuclear positions. [Pg.228]

The expression for the force on the nuclei, Eq. (89), has the same form as the BO force Eq. (16), but the wave function here is the time-dependent one. As can be shown by perturbation theory, in the limit that the nuclei move very slowly compared to the electrons, and if only one electronic state is involved, the two expressions for the wave function become equivalent. This can be shown by comparing the time-independent equation for the eigenfunction of H i at time t... [Pg.290]

If there are no reactions, the conservation of the total quantity of each species dictates that the time dependence of is given by minus the divergence of the flux ps vs), where (vs) is the drift velocity of the species s. The latter is proportional to the average force acting locally on species s, which is the thermodynamic force, equal to minus the gradient of the thermodynamic potential. In the local coupling approximation the mobility appears as a proportionality constant M. For spontaneous processes near equilibrium it is important that a noise term T] t) is retained [146]. Thus dynamic equations of the form... [Pg.26]

An initial and desired final configuration of a system can be used by the targeted molecular dynamics (TMD) method (Schlitter et al., 1993) to establish a suitable pathway between the given configurations. The resulting pathway, can then be employed during further SMD simulations for choosing the direction of the applied force. TMD imposes time-dependent holonomic constraints which drive the system from one known state to another. This method is also discussed in the chapter by Helms and McCammon in this volume. [Pg.42]

The intriguing point about the second set of equations is that q is now kept constant. Thus the vector ip evolves according to a time-dependent Schrddinger equation with time-independent Hamilton operator H[q) and the update of the classical momentum p is obtained by integrating the Hellmann-Feynman forces [3] acting on the classical particles along the computed ip t) (plus a constant update due to the purely classical force field). [Pg.416]

Molecular dynamics is a simulation of the time-dependent behavior of a molecular system, such as vibrational motion or Brownian motion. It requires a way to compute the energy of the system, most often using a molecular mechanics calculation. This energy expression is used to compute the forces on the atoms for any given geometry. The steps in a molecular dynamics simulation of an equilibrium system are as follows ... [Pg.60]

Returning to the Maxwell element, suppose we rapidly deform the system to some state of strain and secure it in such a way that it retains the initial deformation. Because the material possesses the capability to flow, some internal relaxation will occur such that less force will be required with the passage of time to sustain the deformation. Our goal with the Maxwell model is to calculate how the stress varies with time, or, expressing the stress relative to the constant strain, to describe the time-dependent modulus. Such an experiment can readily be performed on a polymer sample, the results yielding a time-dependent stress relaxation modulus. In principle, the experiment could be conducted in either a tensile or shear mode measuring E(t) or G(t), respectively. We shall discuss the Maxwell model in terms of shear. [Pg.159]

In a foam where the films ate iaterconnected the related time-dependent Marangoni effect is mote relevant. A similar restoring force to expansion results because of transient decreases ia surface concentration (iacteases ia surface tension) caused by the finite rate of surfactant adsorption at the surface. [Pg.464]

Fig. 59. Time dependence of phases /1a and for a realization of stochastic force at T = 7 c- Also shown are the straight lines of the zero-temperature behavior of /I (solid line) and A (dashed line). Time is measured in units 2I/h. Fig. 59. Time dependence of phases /1a and for a realization of stochastic force at T = 7 c- Also shown are the straight lines of the zero-temperature behavior of /I (solid line) and A (dashed line). Time is measured in units 2I/h.
It has been also shown that when a thin polymer film is directly coated onto a substrate with a low modulus ( < 10 MPa), if the contact radius to layer thickness ratio is large (afh> 20), the surface layer will make a negligible contribution to the stiffness of the system and the layered solid system acts as a homogeneous half-space of substrate material while the surface and interfacial properties are governed by those of the layer [32,33]. The extension of the JKR theory to such layered bodies has two important implications. Firstly, hard and opaque materials can be coated on soft and clear substrates which deform more readily by small surface forces. Secondly, viscoelastic materials can be coated on soft elastic substrates, thereby reducing their time-dependent effects. [Pg.88]

Fig. 22. Nomialized pull-off energy measured for polyethylene-polyethylene contact measured using the SFA. (a) P versus rate of crack propagation for PE-PE contact. Change in the rate of separation does not seem to affect the measured pull-off force, (b) Normalized pull-off energy, Pn as a function of contact time for PE-PE contact. At shorter contact times, P does not significantly depend on contact time. However, as the surfaces remain in contact for long times, the pull-off energy increases with time. In seinicrystalline PE, the crystalline domains act as physical crosslinks for the relatively mobile amorphous domains. These amorphous domains can interdiffuse across the interface and thereby increase the adhesion of the interface. This time dependence of the adhesion strength is different from viscoelastic behavior in the sense that it is independent of rate of crack propagation. Fig. 22. Nomialized pull-off energy measured for polyethylene-polyethylene contact measured using the SFA. (a) P versus rate of crack propagation for PE-PE contact. Change in the rate of separation does not seem to affect the measured pull-off force, (b) Normalized pull-off energy, Pn as a function of contact time for PE-PE contact. At shorter contact times, P does not significantly depend on contact time. However, as the surfaces remain in contact for long times, the pull-off energy increases with time. In seinicrystalline PE, the crystalline domains act as physical crosslinks for the relatively mobile amorphous domains. These amorphous domains can interdiffuse across the interface and thereby increase the adhesion of the interface. This time dependence of the adhesion strength is different from viscoelastic behavior in the sense that it is independent of rate of crack propagation.
It is an unfortunate fact that many students and indeed design engineers are reluctant to get involved with plastics because they have an image of complicated materials with structures described by complex chemical formulae. In fact it is not necessary to have a detailed knowledge of the structure of plastics in order to make good use of them. Perfectly acceptable designs are achieved provided one is familiar with their perfonnance characteristics in relation to the proposed service conditions. An awareness of the structure of plastics can assist in understanding why they exhibit a time-dependent response to an applied force, why acrylic is transparent and stiff whereas polyethylene is opaque and flexible, etc., but it is not necessary for one to be an expert... [Pg.2]

Figure 2.5-2 depicts the force of mortality as a bathtub curve for the life-death history of a component without repair. The reasons for the near universal use of the constant X exponential distribution (which only applies to the mid-life region) are mathematical convenience, inherent truth (equation 2.5-19), the use of repair to keep components out of the wearout region, startup testing to eliminate infant mortality, and detailed data to support a time-dependent X. [Pg.46]

Here v is the space- and time-dependent velocity field, p is the density of the fluid, p is the local pressure, v is the kinematic viscosity, and / is some arbitrary body-force acting on each small element of the fluid (gravitation, for example). [Pg.904]

A clean first-order process may erroneously appear to be a biphasic one, and vice versa. If the distortion to the property-time curve is not so evident as in the example, there might be a smooth rise or fall from reactant to product. The linearity of the plot of In (Y, - Kcc) versus time depends on the end point reading Yr.. One must be cautious, however, in ascribing a mildly curved plot of In Y, - W) versus time to a biphasic pattern. Were the observed value of Yx off by a small amount, a simple adjustment could give a straight-line plot indicative of first-order kinetics. Of course, if Tec is adjusted to force linearity, one must surely ask whether the revised value of Yx represents a reasonable extrapolation of the data, lest the proper but more complex reaction pattern be concealed. [Pg.75]

These relations between the various coefficients are valid provided that the transfer rate is linearly related to the driving force and that the equilibrium relationship is a straight line. They are therefore applicable for the two-film theory, and for any instant of time for the penetration and film-penetration theories. In general, application to time-averaged coefficients obtained from the penetration and film-penetration theories is not permissible because the condition at the interface will be time-dependent unless all of the resistance lies in one of the phases. [Pg.620]

With time-dependent computer simulation and visualization we can give the novices to QM a direct mind s eye view of many elementary processes. The simulations can include interactive modes where the students can apply forces and radiation to control and manipulate atoms and molecules. They can be posed challenges like trapping atoms in laser beams. These simulations are the inside story of real experiments that have been done, but without the complexity of macroscopic devices. The simulations should preferably be based on rigorous solutions of the time dependent Schrddinger equation, but they could also use proven approximate methods to broaden the range of phenomena to be made accessible to the students. Stationary states and the dynamical transitions between them can be presented as special cases of the full dynamics. All these experiences will create a sense of familiarity with the QM realm. The experiences will nurture accurate intuition that can then be made systematic by the formal axioms and concepts of QM. [Pg.27]


See other pages where Force time dependent is mentioned: [Pg.122]    [Pg.14]    [Pg.852]    [Pg.2986]    [Pg.17]    [Pg.39]    [Pg.41]    [Pg.55]    [Pg.366]    [Pg.136]    [Pg.304]    [Pg.137]    [Pg.678]    [Pg.1735]    [Pg.154]    [Pg.470]    [Pg.149]    [Pg.187]    [Pg.199]    [Pg.231]    [Pg.145]    [Pg.34]    [Pg.46]    [Pg.377]    [Pg.175]    [Pg.1304]    [Pg.449]    [Pg.66]    [Pg.314]   


SEARCH



Force dependency

Peel force time dependence

Time-dependent external forcing

© 2024 chempedia.info