Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonian operator matrix elements

As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

For a coupled spin system, the matrix of the Liouvillian must be calculated in the basis set for the spin system. Usually this is a simple product basis, often called product operators, since the vectors in Liouville space are spm operators. The matrix elements can be calculated in various ways. The Liouvillian is the conmuitator with the Hamiltonian, so matrix elements can be calculated from the commutation rules of spin operators. Alternatively, the angular momentum properties of Liouville space can be used. In either case, the chemical shift temis are easily calculated, but the coupling temis (since they are products of operators) are more complex. In section B2.4.2.7. the Liouville matrix for the single-quantum transitions for an AB spin system is presented. [Pg.2099]

One of the easiest ways to improve the results is through the replacement of the matrix element of the energy operator of electrostatic interaction by some effective interaction, in which, together with the usual expression of the type (19.29), there are also terms containing odd k values. This means that we adopt some effective Hamiltonian, whose matrix elements of the... [Pg.251]

In this section, we will show how the thermal density matrix is used in PIMC to compute quantum viiial coefficients. Consider the Hamiltonian of a monatomic molecule like helium with mass m (Eq. 7). Using the primitive approximation (Eq. 4), Trotter formula (Eq. 5), and following the procedure outlined in Ref. [9], we can obtain the kinetic-energy operator matrix elements as ... [Pg.98]

Energy corrections are calculated in MS theories as eigenvalues of an effective Hamiltonian, obtained relying on the Bloch equation and the zero-order operator. Matrix elements for the MS-pLMCPT variant at order 2 read as... [Pg.226]

The usual way of solving eqn (7) requires its transformation into the interaction representation (Dirac picture) that is often called rotating frame for a particular case, when static part of the spin Hamiltonian is restricted to the electron Zeeman interaction. In the Dirac picture only the stochastic dipolar interaction is left in the spin Hamiltonian, its matrix elements get additional oscillatory factors due to the static Hamiltonian transitions. The integral on each matrix element of the double commutator in eqn (7) thus evolves into the Fourier transform /(co ) of the correlation function for the corresponding stochastic process. This Fourier transform is often called spectral density of the stochastic process and it is to be taken at a frequency co of a particular transition of the static Hamiltonian operator, driven by a single transition operator ki ... [Pg.15]

The symmetry argument actually goes beyond the above deterniination of the symmetries of Jahn-Teller active modes, the coefficients of the matrix element expansions in different coordinates are also symmetry determined. Consider, for simplicity, an electronic state of symmetiy in an even-electron molecule with a single threefold axis of symmetry, and choose a representation in which two complex electronic components, e ) = 1/v ( ca) i cb)), and two degenerate complex nuclear coordinate combinations Q = re " each have character T under the C3 operation, where x — The bras e have character x. Since the Hamiltonian operator is totally symmetric, the diagonal matrix elements e H e ) are totally symmetric, while the characters of the off-diagonal elements ezf H e ) are x. Since x = 1, it follows that an expansion of the complex Hamiltonian matrix to quadratic terms in Q. takes the form... [Pg.7]

The Hamiltonian again has the basic form of Eq. (63). The system is described by the nuclear coordinates, Q, which are relative to a suitable nuclear configuration Q. In conbast to Section in.C, this may be any point in configmation space. As a diabatic representation has been assumed, the kinetic energy operator matrix, T, is diagonal with elements... [Pg.285]

Yarkoni [108] developed a computational method based on a perturbative approach [109,110], He showed that in the near vicinity of a conical intersection, the Hamiltonian operator may be written as the sum a nonperturbed Hamiltonian Hq and a linear perturbative temr. The expansion is made around a nuclear configuration Q, at which an intersection between two electronic wave functions takes place. The task is to find out under what conditions there can be a crossing at a neighboring nuclear configuration Qy. The diagonal Hamiltonian matrix elements at Qy may be written as... [Pg.382]

A convenience of electronic basis functions (53) is that they reduce at infinitesimal-amplitude bending to (28) with the same meaning of the angle 9 we may employ these asymptotic forms in the computation of the matrix elements of the kinetic energy operator and in this way avoid the necessity of carrying out calculations of the derivatives of the electronic wave functions with respect to the nuclear coordinates. The electronic part of the Hamiltonian is represented in the basis (53) by... [Pg.522]

One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N-Electron Configuration Eunctions for Any Operator, the Electronic Hamiltonian in Particular. The Slater-Condon Rules Provide this Capability... [Pg.275]

Onee maximal eoineidenee has been aehieved, the Slater-Condon (SC) rules provide the following preseriptions for evaluating the matrix elements of any operator F + G eontaining a one-eleetron part F = Zi f(i) and a two-eleetron part G = Zij g(i,j) (the Hamiltonian is, of eourse, a speeifie example of sueh an operator the eleetrie dipole... [Pg.277]

The amplitude for the so-ealled referenee CSF used in the SCF proeess is taken as unity and the other CSFs amplitudes are determined, relative to this one, by Rayleigh-Sehrodinger perturbation theory using the full N-eleetron Hamiltonian minus the sum of Foek operators H-H as the perturbation. The Slater-Condon rules are used for evaluating matrix elements of (H-H ) among these CSFs. The essential features of the MPPT/MBPT approaeh are deseribed in the following artieles J. A. Pople, R. Krishnan, H. B. Sehlegel, and J. S. Binkley, Int. J. Quantum Chem. 14, 545 (1978) R. J. Bartlett and D. M. Silver, J. Chem. Phys. 3258 (1975) R. Krishnan and J. A. Pople, Int. J. Quantum Chem. [Pg.484]

The A matrix involves elements between singly excited states while B is given by matrix elements between doubly excited states and the reference. The P/Q elements are matrix elements of the operator between the reference and a singly excited state. If P = r this is a transition moment, and in the general case it is often denoted a property gradient , in analogy with the case where the operator is the Hamiltonian (eq. (3.67). [Pg.260]

The aja, operator tests whether orbital i exists in the wave function, if that is the case, a one-electron orbital matrix element is generated, and similarly for the two-electron terms. Using the Hamiltonian in eq. (C.6) with the wave function in eq. (C.4) generates the first quantized operator in eq. (C.3). [Pg.412]

The C matrix, the columns ofwhich, Cj(, are the eigenvectors of H, is normally not too different from the matrix defined above. However, the QDPT treatment, applied either to an adiabatic or to a diabatic zeroth-order basis, is necessary in order to prevent serious artefacts, especially in the case of avoided crossings [27]. The preliminary diabatisation makes it easier to interpolate the matrix elements of the hamiltonian and of other operators as functions of the nuclear coordinates and to calculate the nonadiabatic coupling matrix elements ... [Pg.351]

Here, n denotes a number operator, a creation operator, c an annihilation operator, and 8 an energy. The first term with the label a describes the reactant, the second term describes the metal electrons, which are labeled by their quasi-momentum k, and the last term accounts for electron exchange between the reactant and the metal Vk is the corresponding matrix element. This part of the Hamiltonian is similar to that of the Anderson-Newns model [Anderson, 1961 Newns, 1969], but without spin. The neglect of spin is common in theories of outer sphere reactions, and is justified by the comparatively weak electronic interaction, which ensures that only one electron is transferred at a time. We shall consider spin when we treat catalytic reactions. [Pg.34]

We now notice that we could write a Hamiltonian operator that would give the same matrix elements we have here, but as a first-order result. Including the electron Zeeman interaction term, we have the resulting spin Hamiltonian ... [Pg.125]


See other pages where Hamiltonian operator matrix elements is mentioned: [Pg.289]    [Pg.351]    [Pg.221]    [Pg.347]    [Pg.75]    [Pg.384]    [Pg.301]    [Pg.139]    [Pg.265]    [Pg.72]    [Pg.175]    [Pg.33]    [Pg.485]    [Pg.488]    [Pg.479]    [Pg.238]    [Pg.235]    [Pg.66]    [Pg.725]    [Pg.169]    [Pg.144]    [Pg.25]    [Pg.310]    [Pg.57]    [Pg.260]    [Pg.461]   
See also in sourсe #XX -- [ Pg.74 ]

See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Hamiltonian matrix elements

Hamiltonian matrix operator

Hamiltonian operator

Matrix element

Matrix operations

Operational matrix

Operator matrix

Operator matrix element

© 2024 chempedia.info