Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides, electron transfer

The rhodium(II) radical [Rh(dmgH)2PPh3], formed by laser photolysis of the corresponding dimer, is oxidized by a range of cobalt(II) complexes which have coordinated halides. " Electron transfer is believed to occur through a ligand-mediated pathway and the reaction rate is dependent upon the choice of halide. In an examination of the Ti(III)-induced cyclization of epoxyolefins, a mechanism has been invoked which involves a metal-centered radical. ... [Pg.67]

One-electron oxidation of carboxylate ions generates acyloxy radicals, which undergo decarboxylation. Such electron-transfer reactions can be effected by strong one-electron oxidants, such as Mn(HI), Ag(II), Ce(IV), and Pb(IV) These metal ions are also capable of oxidizing the radical intermediate, so the products are those expected from carbocations. The oxidative decarboxylation by Pb(IV) in the presence of halide salts leads to alkyl halides. For example, oxidation of pentanoic acid with lead tetraacetate in the presence of lithium chloride gives 1-chlorobutane in 71% yield ... [Pg.726]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

The reactivities of the substrate and the nucleophilic reagent change vyhen fluorine atoms are introduced into their structures This perturbation becomes more impor tant when the number of atoms of this element increases A striking example is the reactivity of alkyl halides S l and mechanisms operate when few fluorine atoms are incorporated in the aliphatic chain, but perfluoroalkyl halides are usually resistant to these classical processes However, formal substitution at carbon can arise from other mecharasms For example nucleophilic attack at chlorine, bromine, or iodine (halogenophilic reaction, occurring either by a direct electron-pair transfer or by two successive one-electron transfers) gives carbanions These intermediates can then decompose to carbenes or olefins, which react further (see equations 15 and 47) Single-electron transfer (SET) from the nucleophile to the halide can produce intermediate radicals that react by an SrnI process (see equation 57) When these chain mechanisms can occur, they allow reactions that were previously unknown Perfluoroalkylation, which used to be very rare, can now be accomplished by new methods (see for example equations 48-56, 65-70, 79, 107-108, 110, 113-135, 138-141, and 145-146)... [Pg.446]

It has generally been concluded that the photoinitiation of polymerization by the transition metal carbonyls/ halide system may occur by three routes (1) electron transfer to an organic halide with rupture of C—Cl bond, (2) electron transfer to a strong-attracting monomer such as C2F4, probably with scission of-bond, and (3) halogen atom transfer from monomer molecule or solvent to a photoexcited metal carbonyl species. Of these, (1) is the most frequently encountered. [Pg.247]

A number of approaches have been tried for modified halo-de-diazoniations using l-aryl-3,3-dialkyltriazenes, which form diazonium ions in an acid-catalyzed hydrolysis (see Sec. 13.4). Treatment of such triazenes with trimethylsilyl halides in acetonitrile at 60 °C resulted in the rapid evolution of nitrogen and in the formation of aryl halides (Ku and Barrio, 1981) without an electron transfer reagent or another catalyst. Yields with silyl bromide and with silyl iodide were 60-95%. The authors explain the reaction as shown in (Scheme 10-30). The formation of the intermediate is indicated by higher yields if electron-withdrawing substituents (X = CN, COCH3) are present. In the opinion of the present author, it is likely that the dissociation of this intermediate is not a concerted reaction, but that the dissociation of the A-aryl bond to form an aryl cation is followed by the addition of the halide. The reaction is therefore mechanistically not related to the homolytic halo-de-diazoniations. [Pg.238]

It might be mentioned that matters are much simpler for organometallic compounds with less-polar bonds. Thus Et2Hg and EtHgCl are both definite compounds, the former is a liquid and the latter is a solid. Organocalcium reagents are also known, and they are formed from alkyl halides via a single electron transfer (SET) mechanism with free-radical intermediates. "... [Pg.237]

The electrophilic character of sulfur dioxide does not only enable addition to reactive nucleophiles, but also to electrons forming sulfur dioxide radical anions which possess the requirements of a captodative" stabilization (equation 83). This electron transfer occurs electrochemically or chemically under Leuckart-Wallach conditions (formic acid/tertiary amine - , by reduction of sulfur dioxide with l-benzyl-1,4-dihydronicotinamide or with Rongalite The radical anion behaves as an efficient nucleophile and affords the generation of sulfones with alkyl halides " and Michael-acceptor olefins (equations 84 and 85). [Pg.216]

An important synthetic application of this reaction is in dehalogenation of dichloro- and dibromocyclopropanes. The dihalocyclopropanes are accessible via carbene addition reactions (see Section 10.2.3). Reductive dehalogenation can also be used to introduce deuterium at a specific site. The mechanism of the reaction involves electron transfer to form a radical anion, which then fragments with loss of a halide ion. The resulting radical is reduced to a carbanion by a second electron transfer and subsequently protonated. [Pg.439]

The formation of Grignard reagents takes place at the metal surface. Reaction commences with an electron transfer to the halide and decomposition of the radical ion, followed by rapid combination of the organic group with a magnesium ion.1 It... [Pg.620]

Alkyllithium reagents can also be generated by reduction of sulfides.32 Alkenyl-lithium and substituted alkyllithium reagents can be prepared from sulfides,33 and sulfides can be converted to lithium reagents by the catalytic electron transfer process described for halides.34... [Pg.625]

The mechanistic aspects of the SRN1 reaction were discussed in Section 11.6 of Part A. The distinctive feature of the SRN1 mechanism is an electron transfer between the nucleophile and the aryl halide.181 The overall reaction is normally a chain process. [Pg.1053]

Electrogenerated monovalent Co complexes of the well-known open chain N202 Schiff base ligands salen (8), salphen (9), and their substituted derivatives undergo oxidative additions with alkyl halides. Reactions of the complex with substrates within the series RBr (R = Pr, Bu, t-Bu) proceed at different rates. The reaction occurs by an inner-sphere alkyl-bridged electron transfer, with a Co1- R+- X-transition state, which is sensitive to distortions of the complex in different configurations.124... [Pg.11]

R,5,R,5-[Ni(937)]+ reacts with a series of alkyl halides in aqueous alkaline solution to form alkylnickel(II) complexes of the type [RNi(937)]+. Kinetic data indicate that the reaction occurs in two steps, the first being a one-electron transfer from [Ni(937)]+ to RX (X = halide), yielding an alkyl radical R. The second step involves rapid capture of the alkyl radical by [Ni(937)]+.2324 [Ni(937)]+ has also been reacted with a number of variously disubstituted alkanes, including... [Pg.483]

It was first suggested that the reaction of an alkyl halide with a nickel(I) Schiff base complex yields an alkylnickel(III) intermediate (Equation (56)). Homolytic cleavage of RBr to give an alkyl radical R and a nickel(II) complex (Equation (57)) or, alternatively, one-electron dissociative reduction leading to R (Equation (58)) are possible pathways.254 A mechanism based on the formation of R via dissociative electron transfer of Ni -salen to RX (Equation (59)) has also been proposed.255... [Pg.487]


See other pages where Halides, electron transfer is mentioned: [Pg.14]    [Pg.886]    [Pg.126]    [Pg.1532]    [Pg.14]    [Pg.886]    [Pg.126]    [Pg.1532]    [Pg.490]    [Pg.990]    [Pg.109]    [Pg.329]    [Pg.246]    [Pg.247]    [Pg.251]    [Pg.104]    [Pg.104]    [Pg.48]    [Pg.195]    [Pg.1030]    [Pg.308]    [Pg.247]    [Pg.389]    [Pg.195]    [Pg.372]    [Pg.144]    [Pg.265]    [Pg.274]    [Pg.1030]    [Pg.660]    [Pg.277]    [Pg.171]    [Pg.313]    [Pg.731]    [Pg.13]    [Pg.92]    [Pg.39]    [Pg.140]    [Pg.110]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 ]




SEARCH



Alkyl halides outer-sphere electron-transfer

Alkyl halides, single electron transfer

Halide transfer

Single electron transfer reaction of perfluoroalkyl halides

© 2024 chempedia.info