Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glycerol-based compounds

Phosphatidic acid, the parent compound for the glycerol-based phospholipids (Figure 8.4), consists of 5w-glycerol-3-phosphate, with fatty acids esterified at the T and 2-positions. Phosphatidic acid is found in small amounts in most natural systems and is an important intermediate in the biosynthesis of the more common glycerophospholipids (Figure 8.6). In these compounds, a... [Pg.244]

Oil biomolecules consisting of glycerols and fatty acids (triglycerides) that are liquid at room temperature Oil of Vitriol concentrated sulfuric acid Optical Isomer isomers that differ in their ability to rotate light in opposite directions Organic Chemistry chemistry of carbon-based compounds... [Pg.345]

The complexity of chocolate manufacture arises from the polymorphic nature of its constituent fats, which can come in at least five crystal forms, each with an individual melting point. Cocoa butter is chemically a multicomponent mixture of triglycerides and trace compounds (Davis and Dimick 1986). Approximately 85% of the composition consists of just three triglycerides POP ( 20%), POS ( 40%) and SOS ( 25%), where palmitic (P), oleic (O) and stearic (S) are the fatty acids attached to the glycerol base. The precise composition depends on factors such as growing conditions and therefore can vary between batches, especially from different geographic regions (Chaiseri and Dimick 1989). [Pg.527]

The preparation of glycerol-based Ca-synthons and intermediates represents an interesting example where enzymatic transesterification is widely exploited. Alcoholysis of tributyrin with PPL was already shown to produce a chiral diglyceride (Fig. 3). Alcoholysis of trityl-protected dibutyrin with methanol in organic solvents shows some essential features about regio- and enantioselectivity in bifunctional compounds (Fig. 18) (25). Most lipases, such as lipases PS and AK and Novozym 435, first regioselectively produce the primary alcohol from the diester. With lipase AK, the reaction leads to effective kinetic resolution (A), whereas Novozym 435-catalyzed reaction (B) is not enantioselective. However,... [Pg.2096]

Hydroxyquinoline ( oxine ). The technique adopted in this preparation is based upon the fact that, in general, the reactants glycerol, amine, nitro compound and sulphuric acid can be mixed with temperature control, and then maintained at any convenient temperature below 120° without any appreciable chemical reaction taking place. A pre-mix of the amine, glycerol and sulphuric acid, maintained at a temperature which keeps it fluid (60-90°), is added in portions to a reaction vessel containiug the nitro compound and warmed with stirring to 140-170° at which temperature the Skraup reaction takes place. [Pg.830]

The macrocyclic antibiotic-based CSPs have not been used extensively in SFC. Two macrocyclic antibiotic CSPs, Chirobiotic T and Chirobiotic V, were included in a study of various CSPs in SFC. At least partial resolution of approximately half of the 44 test compounds could be obtained on these two CSPs in SFC [63]. A high concentration of modifier was necessary to elute some of the analytes. Enantioreso-lution of derivatized amino acids was also demonstrated in the same study. Flowever, a complex modifier comprised of methanol, water, and glycerol was required for separations performed on the Chirobiotic T CSP. The separation of coumachlor enantiomers on a vancomycin-based CSP (Chirobiotic V) in SFC is illustrated in Fig. 12-5 [32]. [Pg.310]

The simultaneous analysis of orthophosphate, glycerol phosphates, and inositol phosphates has been achieved by spectrophotometric analysis of the molybdovanadate complexes. Also, a sensitive and selective chemiluminescent molecular emission method for the estimation of phosphorus and sulphur is described, which is based on passing solutions into a cool, reducing, nitrogen-hydrogen diffusion flame. For organic compounds it was usually necessary to prepare test solutions by an oxygen-flask combustion technique. [Pg.278]

How the aliphatic monomers are incorporated into the suberin polymer is not known. Presumably, activated co-hydroxy acids and dicarboxylic acids are ester-ified to the hydroxyl groups as found in cutin biosynthesis. The long chain fatty alcohols might be incorporated into suberin via esterification with phenylpro-panoic acids such as ferulic acid, followed by peroxidase-catalyzed polymerization of the phenolic derivative. This suggestion is based on the finding that ferulic acid esters of very long chain fatty alcohols are frequently found in sub-erin-associated waxes. The recently cloned hydroxycinnamoyl-CoA tyramine N-(hydroxycinnamoyl) transferase [77] may produce a tyramide derivative of the phenolic compound that may then be incorporated into the polymer by a peroxidase. The glycerol triester composed of a fatty acid, caffeic acid and a>-hydroxy acid found in the suberin associated wax [40] may also be incorporated into the polymer by a peroxidase. [Pg.27]

These are the most common class of complex lipid (Figure 12.11) and contain a phosphoric acid residue (phosphate group) and two fatty acids esterified to glycerol. Attached to the phosphate group is an amino alcohol, sometimes referred to as the nitrogenous base, which may be either serine, choline or ethanolamine or sometimes the monomethyl or dimethyl derivatives of ethanolamine (Table 12.4). Alternatively, a polyhydroxy compound which is either glycerol, myo-inositol or one of their derivatives is attached instead... [Pg.416]


See other pages where Glycerol-based compounds is mentioned: [Pg.1]    [Pg.12]    [Pg.1]    [Pg.12]    [Pg.236]    [Pg.187]    [Pg.84]    [Pg.1033]    [Pg.399]    [Pg.52]    [Pg.795]    [Pg.90]    [Pg.203]    [Pg.1056]    [Pg.162]    [Pg.773]    [Pg.192]    [Pg.12]    [Pg.307]    [Pg.299]    [Pg.120]    [Pg.34]    [Pg.386]    [Pg.794]    [Pg.1066]    [Pg.19]    [Pg.30]    [Pg.122]    [Pg.129]    [Pg.196]    [Pg.65]    [Pg.98]    [Pg.35]    [Pg.1638]    [Pg.91]    [Pg.44]    [Pg.34]    [Pg.91]    [Pg.84]    [Pg.514]    [Pg.381]   
See also in sourсe #XX -- [ Pg.12 , Pg.13 , Pg.14 ]




SEARCH



Base compounds

Based compounds

Glycerol-based compounds acyl glycerols

© 2024 chempedia.info