Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gelation prevention

Mainly due to solvent evaporation and surface tension, the solution front is always directed toward the center of the liquid film. At the first stage of evaporation the solution front recedes smoothly then after a short while it starts receding intermittently, with jump. The jumping instability with a stick and slip motion of the receding front is ascribable to the local gelation effect of a polymer at the three-phase line (liquid-substrate-air boundary) where polymer concentration is assumed to be higher than the bulk polymer solution. The local gelation prevents... [Pg.492]

Besides pH, other preparative variables that can affect the microstructure of a gel, and consequendy, the properties of the dried and heat-treated product iaclude water content, solvent, precursor type and concentration, and temperature (9). Of these, water content has been studied most extensively because of its large effect on gelation and its relative ease of use as a preparative variable. In general, too Httie water (less than one mole per mole of metal alkoxide) prevents gelation and too much (more than the stoichiometric amount) leads to precipitation (3,9). Other than the amount of water used, the rate at which it is added offers another level of control over gel characteristics. [Pg.2]

Resoles. Like the novolak processes, a typical resole process consists of reaction, dehydration, and finishing. Phenol and formaldehyde solution are added all at once to the reactor at a molar ratio of formaldehyde to phenol of 1.2—3.0 1. Catalyst is added and the pH is checked and adjusted if necessary. The catalyst concentration can range from 1—5% for NaOH, 3—6% for Ba(OH)2, and 6—12% for hexa. A reaction temperature of 80—95°C is used with vacuum-reflux control. The high concentration of water and lower enthalpy compared to novolaks allows better exotherm control. In the reaction phase, the temperature is held at 80—90°C and vacuum-refluxing lasts from 1—3 h as determined in the development phase. SoHd resins and certain hquid resins are dehydrated as quickly as possible to prevent overreacting or gelation. The end point is found by manual determination of a specific hot-plate gel time, which decreases as the polymerization advances. Automation includes on-line viscosity measurement, gc, and gpc. [Pg.298]

Phthahc resins are usually processed to an acid number of 25—35, yielding a polymer with an average of 1800—2000. The solution viscosity of the polymer is usually followed to ascertain the polymer end point. The resin is cooled to 150°C and hydroquinone stabilizer (150 ppm) is added to prevent premature gelation during the subsequent blending process with styrene at 80°C. The final polymer solution is cooled to 25°C before a final quaUty check and dmmming out for shipment. [Pg.316]

Polyester Resins. Reinforced polyester resins are thermosets based on unsaturated polyesters from glycols and dibasic acids, either or both of which contain reactive double bonds. The ratio of saturated to unsaturated components controls the degree of cross-linking and thus the rigidity of the product (see Polyesters, unsaturated). Typically, the glycols and acids are esterified until a viscous Hquid results, to which an inhibitor is added to prevent premature gelation. Addition of the monomer, usually styrene, reduces the viscosity to an easily workable level. [Pg.328]

In order to prevent premature gelation the reaction mixture should be anhydrous, free from pyromellitic acid and reacted at temperatures not exceeding 50°C. [Pg.518]

Polymerization inhibitors are key additives which prevent premature gelation of the adhesive. The foimulator must carefully balance shelf stability and the required cure on demand. Due to its high propagation rate, MMA is difficult to inhibit. Some comments on specific inhibitors follow. The most common inhibitor to be found in component monomers is 4-methoxyphenol, which is also called the methyl ether of hydroquinone. This inhibitor is effective only in the presence of oxygen. A mechanism has been proposed, and is illustrated in Scheme 13 [128]. [Pg.840]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]

The sol-gel-entrapped microbial cells have shown excellent tolerance to different alcohols [99], The immobilized E. coli cells followed the Michaelis-Menten equation when quantified with the (3-glucosidase activity via the hydrolysis of 4-nitrophenyl-(3-D-galactopyranosdie [142], The sol-gel matrices doped with gelatin prevented the cell lysis, which usually occurs during the initial gelation process [143], Microorganisms are now widely used in the biosorption of different pollutants and toxicants. Bacillus sphaericus JG-A12 isolated from uranium mining water has been entrapped in aqueous silica nanosol for the accumulation of copper and uranium [144], Premkumar et al. [145] immobilized recombinant luminous bacteria into TEOS sol-gel to study the effect of sol-gel conditions on the cell response (luminescence). The entrapped and free cells showed almost the same intensity of luminescence (little lower), but the entrapped cells were more stable than the free cells (4 weeks at 4°C). This kind of stable cell could be employed in biosensors in the near future. [Pg.545]

These poly(MMA) obtained could induce the photopolymerization of St to give a star block copolymer, butgelation was partly observed, similar to thepoly-merization of St with 51. The addition of 13 in the photopolymerization of MA with 51 was effective in preventing gelation [175]. [Pg.110]


See other pages where Gelation prevention is mentioned: [Pg.144]    [Pg.68]    [Pg.139]    [Pg.144]    [Pg.68]    [Pg.139]    [Pg.258]    [Pg.284]    [Pg.417]    [Pg.65]    [Pg.33]    [Pg.40]    [Pg.260]    [Pg.490]    [Pg.490]    [Pg.490]    [Pg.13]    [Pg.328]    [Pg.320]    [Pg.337]    [Pg.599]    [Pg.701]    [Pg.524]    [Pg.333]    [Pg.213]    [Pg.42]    [Pg.414]    [Pg.507]    [Pg.388]    [Pg.46]    [Pg.47]    [Pg.136]    [Pg.273]    [Pg.317]    [Pg.248]    [Pg.169]    [Pg.253]    [Pg.355]    [Pg.147]    [Pg.197]    [Pg.390]    [Pg.202]    [Pg.204]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Prevention of gelation

© 2024 chempedia.info