Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional groups lithium aluminum hydride

The dihydro naphthalene 12 was aromatized by first in situ reduction of the carbonyl functionality with lithium aluminum hydride in THF at 60°C for 4 h. Treatment of the carbinol solution with HCl gas provided rapid dehydration of the carbinol to the naphthalene ring 13. The benzo[a]fluorene derivative, cyclization of the 2-aryl ring onto the carbinol group, was not observed.5 Naphthalene 13 was obtained in 68% yield. Demethylation of the methoxy groups with excess gaseous BCI3 in methylene chloride provided 1 as the HCl salt. [Pg.137]

In contrast to alcohols with their nch chemical reactivity ethers (compounds contain mg a C—O—C unit) undergo relatively few chemical reactions As you saw when we discussed Grignard reagents m Chapter 14 and lithium aluminum hydride reduc tions m Chapter 15 this lack of reactivity of ethers makes them valuable as solvents m a number of synthetically important transformations In the present chapter you will learn of the conditions m which an ether linkage acts as a functional group as well as the methods by which ethers are prepared... [Pg.665]

The carbonyl group of carbohydrates can be reduced to an alcohol function Typi cal procedures include catalytic hydrogenation and sodium borohydnde reduction Lithium aluminum hydride is not suitable because it is not compatible with the solvents (water alcohols) that are required to dissolve carbohydrates The products of carbohydrate reduc tion are called alditols Because these alditols lack a carbonyl group they are of course incapable of forming cyclic hemiacetals and exist exclusively m noncyclic forms... [Pg.1052]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

The versatility of lithium aluminum hydride permits synthesis of alkyl, alkenyl, and arylsilanes. Silanes containing functional groups, such as chloro, amino, and alkoxyl in the organic substituents, can also be prepared. Mixed compounds containing both SiCl and SiH cannot be prepared from organopolyhalosilanes using lithium aluminum hydride. Reduction is invariably complete. [Pg.29]

Treatment of thiiranes with lithium aluminum hydride gives a thiolate ion formed by attack of hydride ion on the least hindered carbon atoms (76RCR25), The mechanism is 5n2, inversion occurring at the site of attack. Polymerization initiated by the thiolate ion is a side reaction and may even be the predominant reaction, e.g. with 2-phenoxymethylthiirane. Use of THF instead of ether as solvent is said to favor polymerization. Tetrahydroborates do not reduce the thiirane ring under mild conditions and can be used to reduce other functional groups in the presence of the episulfide. Sodium in ammonia reduces norbornene episulfide to the exo thiol. [Pg.165]

Lithium aluminum hydride will also cleave benzyl ethers, but this is seldom practical because of its high reactivity to other functional groups. ... [Pg.50]

NaBH4, H0(CH2)20H, 40°, 18 h, 87% yield. Lithium aluminum hydride can be used to effect efficient ester cleavage if no other functional group is present that can be attacked by this strong reducing agent. ... [Pg.162]

Lithium aluminum hydride has also been shown to reduce vicinal dibromides to olefins efficiently, but the scope is limited by the reactivity of this reagent towards many functional groups. [Pg.339]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

The synthesis of the right-wing sector, compound 4, commences with the prochiral diol 26 (see Scheme 4). The latter substance is known and can be conveniently prepared in two steps from diethyl malonate via C-allylation, followed by reduction of the two ethoxy-carbonyl functions. Exposure of 26 to benzaldehyde and a catalytic amount of camphorsulfonic acid (CSA) under dehydrating conditions accomplishes the simultaneous protection of both hydroxyl groups in the form of a benzylidene acetal (see intermediate 32, Scheme 4). Interestingly, when benzylidene acetal 32 is treated with lithium aluminum hydride and aluminum trichloride (1 4) in ether at 25 °C, a Lewis acid induced reduction takes place to give... [Pg.197]

The nitrile group in 82 has been transformed into other versatile functional groups, and the derivatives so obtained have been used in the synthesis of various naturally occurring C-nucleosides and their analogs. Reduction of 82 with lithium aluminum hydride gave the amine 90 which was, in turn, transformed84 into the ureido and N-ni-troso derivatives (91-93) by treatment with nitrourea, followed by benzylation, and nitrosation.85 The diazo derivative 94, obtained by treatment of 93 with alcoholic potassium hydroxide, was a key intermediate in the synthesis of formycin B and oxoformycin B (see Section III,2,a,b). [Pg.134]

The importance of reactions with complex, metal hydrides in carbohydrate chemistry is well documented by a vast number of publications that deal mainly with reduction of carbonyl groups, N- and O-acyl functions, lactones, azides, and epoxides, as well as with reactions of sulfonic esters. With rare exceptions, lithium aluminum hydride and lithium, sodium, or potassium borohydride are the... [Pg.216]

Alkyl chlorides are with a few exceptions not reduced by mild catalytic hydrogenation over platinum [502], rhodium [40] and nickel [63], even in the presence of alkali. Metal hydrides and complex hydrides are used more successfully various lithium aluminum hydrides [506, 507], lithium copper hydrides [501], sodium borohydride [504, 505], and especially different tin hydrides (stannanes) [503,508,509,510] are the reagents of choice for selective replacement of halogen in the presence of other functional groups. In some cases the reduction is stereoselective. Both cis- and rrunj-9-chlorodecaIin, on reductions with triphenylstannane or dibutylstannane, gave predominantly trani-decalin [509]. [Pg.63]

The preferential chemical reaction of a reagent with one of two or more different functional groups. For example, sodium borohydride exhibits greater chemoselectivity as a reducing agent than does lithium aluminum hydride, because the latter reacts with a wider spectrum of substances. [Pg.143]


See other pages where Functional groups lithium aluminum hydride is mentioned: [Pg.244]    [Pg.105]    [Pg.816]    [Pg.410]    [Pg.305]    [Pg.438]    [Pg.69]    [Pg.61]    [Pg.163]    [Pg.164]    [Pg.114]    [Pg.66]    [Pg.194]    [Pg.200]    [Pg.201]    [Pg.241]    [Pg.664]    [Pg.666]    [Pg.124]    [Pg.20]    [Pg.111]    [Pg.167]    [Pg.195]    [Pg.1163]    [Pg.1414]    [Pg.217]    [Pg.340]    [Pg.204]    [Pg.205]    [Pg.300]    [Pg.302]    [Pg.497]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Group hydrides

© 2024 chempedia.info