Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional group analysis characterization

The proportionality between the concentration of chromophores and the measured absorbance [Eqs. (6.8) and (6.9)] requires calibration. With copolymers this is accomplished by chemical analysis for an element or functional group that characterizes the chromophore, or, better yet, by the use of isotopically labeled monomers. [Pg.461]

The molecular stmcture of the copolymers is also important. Molecular-weight measurements (osmometry, gpc) and functional group analysis are useful. Block copolymers require supermolecular (morphological) stmctural information as well. A listing of typical copolymer characterization tools and methods is shown in Table 6. [Pg.187]

An integrated GC/IR/MS instrument is a powerful tool for rapid identification of thermally generated aroma compounds. Fourier transform infrared spectroscopy (GC/IR) provides a complementary technique to mass spectrometry (MS) for the characterization of volatile flavor components in complex mixtures. Recent improvements in GC/IR instruments have made it possible to construct an integrated GC/IR/HS system in which the sensitivity of the two spectroscopic detectors is roughly equal. The combined system offers direct correlation of IR and MS chromatograms, functional group analysis, substantial time savings, and the potential for an expert systems approach to identification of flavor components. Performance of the technique is illustrated with applications to the analysis of volatile flavor components in charbroiled chicken. [Pg.61]

Microanalysis, the detection and identification of materials present in small size but relatively high concentration, is distinct from trace analysis, which is concerned with the characterization of small concentrations of material. Organic microanalysis is usually taken to mean elemental analysis (primarily C, H, O, N, P, S, Cl, Br, 1, and Si), and functional group analysis (acetyl, carboxyl, benzoyl, amino, nitro, hydroxy, etc.) on samples usually 1-10 mg in size. The semiquantitative results, accurate to about 10%, serve as a measure of impurities, or inhomogeneity, or for structure determination in solid organic substances. Accurate results of 1 % or better may be expected when large (1 g) samples are taken for analysis and the entire chemical apparatus is scaled upward in size. However, small samples take less time to analyze, so the micro methods are more popular than macro methods. [Pg.395]

As indicated above, the penetration depth is on the order of a micrometer. That means that in ATR, absorption of infrared radiation mostly occurs within a distance 8 of the surface and ATR is not as surface sensitive as some other surface analysis techniques. However, ATR, like all forms of infrared spectroscopy, is very sensitive to functional groups and is a powerful technique for characterizing the surface regions of polymers. [Pg.246]

The type of interaction along the interface will exert a great influence on the various properties of the composite materials. Therefore, to improve the performance of a composite material, it is absolutely necessary to characterize the structures of the interface. Some of the methods for analysis of the interface are ESCA, AES, IR-FTIR, SIMS, and SEM, etc. At present, ESCA is widely used in the surface analysis of elements and the qualitative analysis of functional groups. Figure 11 shows the ESCA spectrum of polyethylene treated with... [Pg.826]

Suitable reagents for derivatizing specific functional groups are summarized in Table 8.21. Many of the reactions and reagents are the familiar ones used in qualitative analysis for the characterization of organic compounds by physical means. Alcohols are converted to esters by reaction with an acid chloride in the presence of a base catalyst (e.g., pyridine, tertiary amine, etc). If the alcohol is to be recovered after the separation, then a derivative which is fairly easy to hydrolyze, such as p-nltrophenylcarbonate, is convenient. If the sample contains labile groups, phenylurethane derivatives can be prepared under very mild reaction conditions. Alcohols in aqueous solution can be derivatized with 3,5-dinitrobenzoyl chloride. [Pg.443]

The investigations directed at the synthesis of thymine-substituted polymers demonstrate that the type of functional groups displayed by nucleic acid bases are compatible with ROMP. Moreover, the application of MALDI-TOF mass spectrometry to the analysis of these polymers adds to the battery of tools available for the characterization of ROMP and its products. The utility of this approach for the creation of molecules with the desired biological properties, however, is still undetermined. It is unknown whether these thymine-substituted polymers can hybridize with nucleic acids. Moreover, ROMP does not provide a simple solution to the controlled synthesis of materials that display specific sequences composed of all five common nucleic acid bases. Nevertheless, the demonstration that metathesis reactions can be conducted with such substrates suggests that perhaps neobiopolymers that function as nucleic acid analogs can be synthesized by such processes. [Pg.226]

Marine chemists have had limited success in characterizing the molecular structure of organic matter, particularly for the dissolved compounds. Chemical analysis usually starts with the isolation of POM from DOM using a filter with a 0.2-p,m pore size. This is generally followed by elemental analysis. More sophisticated approaches involve structural analysis, but this is usually limited to detection of functional groups or broad classes of compounds. [Pg.610]

Another traditional method used for polymer support characterization is elemental analysis. Its use as an accurate quantitative technique for monitoring solid-phase reactions has also been demonstrated [146]. Microanalysis can be extremely valuable if a solid-phase reaction results in the loss or introduction of a heteroatom (usually N, S, P or halogen). In addition, this method can be used for determination of the loading level of a functional group (e. g. usually calculated directly from the observed microanalytical data). For example, in many cases, the displacement of chloride from Merrifield resin has been used as a guide to determine the yield of the solid-phase reaction. [Pg.34]

Infrared and Raman spectroscopy are nondestructive, quick and convenient techniques for monitoring the course of solid-phase reactions, and have therefore been widely used for the characterization of polymer supports and supported species [156-160]. In fact, the application of infrared spectroscopy in solid-phase synthesis has received much attention and has been the subject of several recent reviews [127, 128, 161-164]. Reactions involving either the appearance or disappearance of an IR-active functional group can be easily monitored using any of the IR techniques described in this section. Some beads are typically removed from the reaction mixture, then they are quickly washed and dried prior to IR analysis. Traditionally, polymer supports are diluted and ground with KBr, then conventional FT-IR analysis of the KBr disk is carried out Although this is a commonly used... [Pg.35]

Because of the relatively high loading of functional groups on these hyperbranched PE powders, it was feasible to characterize the products and intermediates in this catalysts synthesis by P CP-MAS NMR spectroscopy, ATR-IR spectroscopy, and XPS analysis. P CP-MAS NMR spectroscopy was especially useful for in distinguishing the phosphinated powder, phosphine-palladium complex, and any adventitiously formed phosphine oxide. Similar NMR analyses were not successfully carried out on hyperbranched grafts on PE films. However, when this same phosphine ligand synthesis and introduction of Pd was carried out on a PE film sample, it was possible to analyze... [Pg.30]

The particular array of chemical shifts found for the nuclei of a given polymer depends, of course, on such factors as bond orientation, substituent effects, the nature of nearby functional groups, solvation influences, etc. As a specific example, derivatives of the carbohydrate hydroxyl moieties may give rise to chemical shifts widely different from those of the unmodified compound, a fact that has been utilized, e.g., in studies (l ) on commercially-important ethers of cellulose. Hence, as illustrated in Fig, 2, the introduction of an 0-methyl function causes (lU,15) a large downfield displacement for the substituted carbon. This change allows for a convenient, direct, analysis of the distribution of ether groups in the polymer. Analogously, carboxymethyl, hydroxyethyl and other derivatives may be characterized as well... [Pg.124]

The overall workflow of ADME/Tox characterization of lead compounds is typically distributed across multiple departments or functional groups within pharmaceutical companies, often with specialized groups for different assays, analysis and interpretation. A representation of the overall workflow is provided in Figure 1.1. [Pg.5]


See other pages where Functional group analysis characterization is mentioned: [Pg.135]    [Pg.135]    [Pg.166]    [Pg.520]    [Pg.124]    [Pg.281]    [Pg.250]    [Pg.251]    [Pg.7]    [Pg.193]    [Pg.190]    [Pg.188]    [Pg.294]    [Pg.297]    [Pg.55]    [Pg.9]    [Pg.82]    [Pg.677]    [Pg.97]    [Pg.71]    [Pg.239]    [Pg.130]    [Pg.330]    [Pg.9]    [Pg.377]    [Pg.345]    [Pg.69]    [Pg.67]    [Pg.19]    [Pg.35]    [Pg.274]    [Pg.32]    [Pg.445]    [Pg.111]    [Pg.101]    [Pg.241]    [Pg.81]    [Pg.249]   
See also in sourсe #XX -- [ Pg.383 , Pg.384 ]




SEARCH



Functional analysis

Functional group analysis

Functional groups, characterized

Functions analysis

© 2024 chempedia.info