Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel Fischer-Tropsch synthesis

A number of chemical products are derived from Sasol s synthetic fuel operations based on the Fischer-Tropsch synthesis including paraffin waxes from the Arge process and several polar and nonpolar hydrocarbon mixtures from the Synthol process. Products suitable for use as hot melt adhesives, PVC lubricants, cormgated cardboard coating emulsions, and poHshes have been developed from Arge waxes. Wax blends containing medium and hard wax fractions are useful for making candles, and over 20,000 t/yr of wax are sold for this appHcation. [Pg.168]

Fischer-Tropsch Waxes. Polymethylene wax [8002-74-2] production is based on the Fischer-Tropsch synthesis, which is basicaHy the polymerisation of carbon monoxide under high pressure and over special catalysts to produce hydrocarbons (see Fuels, synthetic-liquid fuels). [Pg.317]

The indirect liquefaction basehne design is for a plant of similar size. Unhke the direct hquefaction basehne, the design focuses on producing refined transportation fuels by use of Sheh gasification technology. Table 27-17 shows that the crude oil equivalent price is approximately 216/m ( 34/bbl). Additional technological advances in the production of synthesis gas, the Fischer-Tropsch synthesis, and product refining have the potential to reduce the cost to 171/m ( 27/bbl) (1993 US dollars), as shown in the second column of Table 27-17. [Pg.2378]

During the late seventies and early eighties, when oil prices rose after the 1973 war, extensive research was done to change coal to liquid hydrocarbons. However, coal-derived hydrocarbons were more expensive than crude oils. Another way to use coal is through gasification to a fuel gas mixture of CO and H2 (medium Btu gas). This gas mixture could be used as a fuel or as a synthesis gas mixture for the production of fuels and chemicals via a Fischer Tropsch synthesis route. This process is... [Pg.23]

Many chemicals are produced from synthesis gas. This is a consequence of the high reactivity associated with hydrogen and carhon monoxide gases, the two constituents of synthesis gas. The reactivity of this mixture was demonstrated during World War II, when it was used to produce alternative hydrocarbon fuels using Fischer Tropsch technology. The synthesis gas mixture was produced then hy gasifying coal. Fischer Tropsch synthesis of hydrocarbons is discussed in Chapter 4. [Pg.143]

Successful applications of the oxygen-modified CNFs are reported on immobilization of metal complexes ]95], incorporation of small Rh particles [96], supported Pt and Ru CNFs by adsorption and homogeneous deposition precipitation ]97, 98], Co CNFs for Fischer-Tropsch synthesis ]99], and Pt CNFs for PEM fuel cells [100]. [Pg.125]

Figure 8.17. Hydrocarbon distribution of the products formed by Fischer-Tropsch synthesis over cobalt-based catalysts and by additional hydrocracking, illustrating how a two-stage concept enables optimization of diesel fuel yield. [Adapted from S.T. Sie,... Figure 8.17. Hydrocarbon distribution of the products formed by Fischer-Tropsch synthesis over cobalt-based catalysts and by additional hydrocracking, illustrating how a two-stage concept enables optimization of diesel fuel yield. [Adapted from S.T. Sie,...
Table 1.6 Examples of energy- and environment-related systems with metal NPs in ILs Fischer-Tropsch synthesis, fuel cells, and hydrogen generation/storage. [Pg.25]

Recently, the Fischer-Tropsch synthesis regained much attention mainly due to the (political) desire for cleaner fuels and the potential shortage of crude oil. Therefore, research activity is focusing on the development of improved reactor concepts as well as on novel and promising catalysts for an economic production of clean fuels via FTS. [Pg.18]

Yates, I. C., and Satterfield, C. N. 1991. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuels 5 168-73. [Pg.29]

Davis, B. H. 2001. Fischer-Tropsch synthesis Current mechanism and futuristic needs. Fuel Process. Technol. 71 157-66. [Pg.117]

Bian, G., Mochizuki, T., Fujishita, N., Nomoto, H., and Yamada, M. 2003. Activation and catalytic behavior of several Co/Si02 catalysts for Fischer-Tropsch synthesis. Energy Fuels 17 799-803. [Pg.117]

Ohtsuka, Y., Arai, T., Takasaki, S., and Tsubouchi, N. 2003. Fischer-Tropsch synthesis with cobalt catalysts supported on mesoporous silica for efficient production of diesel fuel fraction. Energy Fuels 17 804-9. [Pg.117]

This effort was funded by the National Aeronautics and Space Administration (NASA) Grant NNX07AB93A under a project entitled Basic Studies for the Production and Upgrading of Fischer-Tropsch Synthesis Products to Fuels and the Commonwealth of Kentucky. This research was carried out, in part, at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. DOE, Divisions of Materials Science and Chemical Sciences. Special thanks to Dr. Nebojsa Marinkovic (Beamline X18b, NSLS, Brookhaven) for help with X AFS studies and Joel Young (University of Oklahoma, Department of Physics) for XAFS cell construction. [Pg.163]

Donnelly, T.J., Yates, I.C., Satterfield, C.N. 1988. Analysis and prediction of product distributions of the Fischer-Tropsch synthesis. Energy Fuels 2 734. [Pg.241]

Botes, F.G. 2007. Proposal of a new product characterisation model for the iron-based low-temperature Fischer Tropsch synthesis. Energy Fuels 21 1379. [Pg.241]

Das, T.K., Jacobs, G., Patterson, P.M., Conner, W.A., Li, J., and Davis, B.H. 2003. Fischer-Tropsch synthesis Characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 82 805-15. [Pg.267]

The South African government initiated the Mossgas project in the mid-1980s to investigate the conversion of gas and associated natural gas liquids into transportation fuel. This eventually led to the construction of the Mossgas gas-to-liquids plant (presently known as PetroSA) in Mossel Bay, South Africa. It was designed as a 33,000 barrels per day oil equivalent facility, with two thirds of the production being derived from Fischer-Tropsch synthesis and the remainder from associated gas liquids. This facility reached full commercial production in 1993 and was aimed at the production of transportation fuel only.50... [Pg.351]

The synthetic fuels that can be produced by low-temperature Fischer-Tropsch synthesis inherently have a high quality (being sulfur- and aromatics-free) and can therefore be used as quality improvers with conventional components. [Pg.355]

AGC-21 A process for converting natural gas to liquid fuels in three stages generation of syngas in a fluidized bed, Fischer-Tropsch synthesis in a slurry bubble column reactor, and hydrocracking. Piloted in 1997 and proposed for installation in Qatar. [Pg.14]


See other pages where Fuel Fischer-Tropsch synthesis is mentioned: [Pg.24]    [Pg.24]    [Pg.225]    [Pg.70]    [Pg.194]    [Pg.160]    [Pg.506]    [Pg.2375]    [Pg.2377]    [Pg.85]    [Pg.613]    [Pg.301]    [Pg.311]    [Pg.323]    [Pg.14]    [Pg.24]    [Pg.584]    [Pg.16]    [Pg.29]    [Pg.46]    [Pg.315]    [Pg.422]    [Pg.62]    [Pg.98]    [Pg.107]    [Pg.11]    [Pg.13]   
See also in sourсe #XX -- [ Pg.782 ]




SEARCH



Fischer-Tropsch synthesi

Fischer-Tropsch synthesis

Syngas to Synthetic Fuels The Fischer-Tropsch Synthesis

© 2024 chempedia.info