Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel catalytic combustion

Results obtained in full pressure tests demonstrated the following advantages of rich fuel over lean fuel catalytic combustion ... [Pg.371]

Finally, airstreams may be cleaned of vapors or gases using combustion techniques. In some cases, waste streams may be directly burned as fuel. Catalytic combustion, in which catalysts are utilized to accelerate combustion, is sometimes employed for removing odors and vapors from many operations. [Pg.18]

These two research areas share the common characteristic of involving inorganic solids in the combustion process. Catalytic combustion research focuses on using the solid to facilitate the oxidation of well-known fuels such as hydrogen and methane. Materials synthesis research focuses on using combustion as a means to react the solids either with each other or a gas, such as nitrogen (which in this case acts as an oxidizer), to make new solid materials. [Pg.275]

In this paper we attempt a preliminary investigation on the feasibility of catalytic combustion of CO/ H2 mixtures over mixed oxide catalysts and a comparison in this respect of perovskite and hexaaluminate type catalysts The catalysts have been characterized and tested in the combustion of CO, H2 and CH4 (as reference fuel). The catalytic tests have been carried out on powder materials and the results have been scaled up by means of a mathematical model of the catalyst section of the Hybrid Combustor. [Pg.474]

Catalyst monoliths may laos be employed as catalytic combustion chambers preceding aircraft and stationary gas turbines. As shown diagramatically in Fig. 16, a catalytic combustor comprises a preheat region, a catalyst monolith unit and a thermal region. In the preheat region, a small fuel-rich flame burner is employed to preheat the fuel-air mixture before the hot gases reach the monolith unit. Additional fuel is then injected into the hot gas stream prior to entry to the monolith where... [Pg.197]

Different design concepts have been proposed to match the severe requirements of catalytic combustors. A main classification criterion is based on fuel/air stoichiometry in the catalyst section, which has a dominant effect on the selection of catalytic materials and on the operating characteristics of the combustor. In this section, only configurations based on lean catalytic combustion will be described. The peculiar characteristics of rich catalytic combustion will be described in a separate section. [Pg.366]

Numerous studies have been published on catalyst material directly related to rich catalytic combustion for GTapplications [73]. However, most data are available on the catalytic partial oxidation of methane and light paraffins, which has been widely investigated as a novel route to H2 production for chemical and, mainly, energy-related applications (e.g. fuel cells). Two main types of catalysts have been studied and are reviewed below supported nickel, cobalt and iron catalysts and supported noble metal catalysts. [Pg.382]

Rich catalytic combustion will offer wide opportunities with respect to most of the above issues, including flexible integration in different machines, low-temperature ignition ability, tolerance to fuel concentration and temperature non-uniformities and fuel flexibility. Further, the production of syngas in short contact time catalytic reactors could be exploited in several energy-related applications such as fuel cell and oxy-fuel combustion. [Pg.387]

Catalytic combustion for gas turbines has received much attention in recent years in view of its unique capability of simultaneous control of NOX) CO, and unbumed hydrocarbon emissions.1 One of the major challenges to be faced in the development of industrial devices is associated with the severe requirements on catalytic materials posed by extreme operating conditions of gas turbine combustors. The catalytic combustor has to ignite the mixture of fuel (typically natural gas) and air at low temperature, preferably at the compressor outlet temperature (about 350 °C), guarantee complete combustion in few milliseconds, and withstand strong thermal stresses arising from long-term operation at temperatures above 1000°C and rapid temperature transients. [Pg.85]

Catalytic Combustion Properties of M-substituted Hexaaluminates - Most of the catalytic studies performed over hexaaluminate materials deal with the combustion of CH4 as the main component of natural gas, i.e., the typical fuel of gas turbines. Arai and co-workers were the first to investigate the CH4 combustion activity of BaMAlnOjg with M=Cr, Mn, Fe, Co, Ni prepared via the alkoxide route.5 Activity tests were performed over powder catalysts using a conventional quartz microreactor fed with a diluted CH4-air mixture (1% CH4) at high-space velocity (GHSV=48000 h 1). The results are summarized in Table 3 in terms of T10% (i.e., the temperature required to achieve 10% conversion). [Pg.102]

There are many chemically reacting flow situations in which a reactive stream flows interior to a channel or duct. Two such examples are illustrated in Figs. 1.4 and 1.6, which consider flow in a catalytic-combustion monolith [28,156,168,259,322] and in the channels of a solid-oxide fuel cell. Other examples include the catalytic converters in automobiles. Certainly there are many industrial chemical processes that involve reactive flow tubular reactors. Innovative new short-contact-time processes use flow in catalytic monoliths to convert raw hydrocarbons to higher-value chemical feedstocks [37,99,100,173,184,436, 447]. Certain types of chemical-vapor-deposition reactors use a channel to direct flow over a wafer where a thin film is grown or deposited [219]. Flow reactors used in the laboratory to study gas-phase chemical kinetics usually strive to achieve plug-flow conditions and to minimize wall-chemistry effects. Nevertheless, boundary-layer simulations can be used to verify the flow condition or to account for non-ideal behavior [147]. [Pg.309]

Similar reaction sequences have been identified in other chemically reacting systems, specifically catalytic combustion (52, 53), solid-fuel combustion (54), transport and reaction in high-temperature incandescent lamps (55), and heterogeneous catalysis (56 and references within). The elementary reactions in hydrocarbon combustion are better understood than most CVD gas-phase reactions are. Similarly, the surface reaction mechanisms underlying hydrocarbon catalysis are better known than CVD surface reactions. [Pg.217]

Polman, E. A., Der Kinderen, ). M., Thuis, F. M. A., Novel compact steam reformer for fuel cells with heat generation by catalytic combustion augmented by induction heating, Catal. Today 1999, 47, 347-351. [Pg.405]

Another important aspect is optimization of the process parameters. The challenge here is to control catalytic combustion, in order to attain overlapping of the combustion and reforming reaction over a sufficient interval [46]. The operating conditions are mainly determined by the fuel composition and the heat exchange... [Pg.37]

Oxidation is extremely important both from a scientific and a practical point of view. Without oxidation life would not exist. In the chemical industry, too, oxidation is probably the most important process. A major example is the combustion of fossil fuels. This process is usually uncatalyzed, but sophisticated catalytic processes do exist. Examples in the inorganic industry are the oxidation of sulphur dioxide and ammonia in the manufacture of sulphuric acid and nitric acid, respectively. In the petrochemical industry many catalytic synthesis processes are carried out, for example the production of ethylene and propene epoxide, phthalic acid anhydride. An example which has recently also become important is the catalytic combustion of hydrocarbons in flue gases. Table 5.2 gives a list of examples of oxidation catalysis in industry [93]. [Pg.186]


See other pages where Fuel catalytic combustion is mentioned: [Pg.914]    [Pg.914]    [Pg.509]    [Pg.405]    [Pg.193]    [Pg.194]    [Pg.473]    [Pg.473]    [Pg.478]    [Pg.479]    [Pg.481]    [Pg.7]    [Pg.286]    [Pg.147]    [Pg.1175]    [Pg.363]    [Pg.370]    [Pg.370]    [Pg.371]    [Pg.373]    [Pg.387]    [Pg.509]    [Pg.722]    [Pg.505]    [Pg.27]    [Pg.173]    [Pg.17]    [Pg.23]    [Pg.320]    [Pg.328]    [Pg.377]    [Pg.682]    [Pg.38]    [Pg.443]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



Catalytic combustion

Fuel-rich Catalytic Combustion

Lean fuel catalytic combustion

© 2024 chempedia.info