Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free electron theory, application

Chapter 2 introduces the band theory of solids. The main approach is via the tight binding model, seen as an extension of the molecular orbital theory familiar to chemists. Physicists more often develop the band model via the free electron theory, which is included here for completeness. This chapter also discusses electronic condnctivity in solids and in particular properties and applications of semiconductors. [Pg.499]

Lorentz1 advanced a theory of metals that accounts in a qualitative way for some of their characteristic properties and that has been extensively developed in recent years by the application of quantum mechanics. He thought of a metal as a crystalline arrangement of hard spheres (the metal cations), with free electrons moving in the interstices.. This free-electron theory provides a simple explanation of metallic luster and other optical properties, of high thermal and electric conductivity, of high values of heat capacity and entropy, and of certain other properties. [Pg.393]

In Figure 7, S is plotted against the absolute temperature, T. At low temperatures, where the residual resistance dominated the thermal resistance, the expression S = (1/3) (7r2k2T/e ) should be valid if free electron theory is applicable. We find in Figure 6 a linear dependence of S upon T at low temperatures, as expected. From the slope of the straight line at low temperatures we... [Pg.246]

Most applications of free-electron theory " have been to planar conjugated systems. Nevertheless, the bonding electrons in various three-dimensional networks are also delocalized. Treating them with the theory involves some additional assumptions and is more approximate. [Pg.16]

Space does not unfortunately permit more than a mention of the free-electron molecular orbital theory and its application to the spectra of unsaturated hydrocarbons and heteromolecules. The very recent calculations of Ham and Ruedenberg on unsaturated hydrocarbons cover a more extensive range than the LCAO calculations of Pariser, with which they agree very well. It seems fair, however, to say that in spite of brilliant exploratory work in this field the free-electron theory in its present form still lacks foundations as secure as those which have now been provided for the LCAO theory. A particular difficulty in the free-electron molecular orbital theory is the proper inclusion of electron repulsion various ways have been devised of introducing it into the theory but the validity of these expedients still rests on goodwill rather than on rigor. Nevertheless the free-electron theory, in the hands of Platt and Kuhn, has already pointed the way to a sound theory of the spectra of linear and branched systems, and there seems little doubt that the next few years will witness advances in the theory of d)re spectra - as important as those which have already occurred in the theory of simpler molecules. [Pg.262]

In the theory of electron states of crystals Bloch has started his investigations from a point of view which in a certain sense is opposite to the point of view of Sommerfeld. He tried to describe the electronic states of a crystal as a linear combination of atomic eigenfunctions. His method was transferred to the theory of w-electron systems by Huckel, who became the founder of this field of research. The Huckel theory has a wider field of application, while the free-electron theories can only be used for the analysis of spectroscopic data. [Pg.4]

The Huckel theory, at least in principle, can be applied to the analysis of spectroscopic data and in the interpretation of caloric energy values such as resonance energies. It is well-known that the application of the free-electron theories in the spectroscopic... [Pg.4]

We should point out that up to now we have considered only polycrystals characterized by an a priori surface area depleted in principal charge carriers. For instance, chemisorption of acceptor particles which is accompanied by transition-free electrons from conductivity band to adsorption induced SS is described in this case in terms of the theory of depleted layer [31]. This model is applicable fairly well to describe properties of zinc oxide which is oxidized in air and is characterized by the content of surface adjacent layers which is close to the stoichiometric one [30]. [Pg.112]

The coupling of two acid-base pairs according to (3) is universally applicable and, in particular, includes organic solvents. Thus Bronsted s theory explains the acidity and basicity of organic solvents and of the substances dissolved therein, with the free electron pair of the solvent molecules here fulfilling the basic function, as e.g. in the case of acetone (a) and ether (b) ... [Pg.196]

The surface states observed by field-emission spectroscopy have a direct relation to the process in STM. As we have discussed in the Introduction, field emission is a tunneling phenomenon. The Bardeen theory of tunneling (1960) is also applicable (Penn and Plummer, 1974). Because the outgoing wave is a structureless plane wave, as a direct consequence of the Bardeen theory, the tunneling current is proportional to the density of states near the emitter surface. The observed enhancement factor on W(IOO), W(110), and Mo(IOO) over the free-electron Fermi-gas behavior implies that at those surfaces, near the Fermi level, the LDOS at the surface is dominated by surface states. In other words, most of the surface densities of states are from the surface states rather than from the bulk wavefunctions. This point is further verified by photoemission experiments and first-principles calculations of the electronic structure of these surfaces. [Pg.104]

We will describe, in some detail, one such modification, an effective Dirac equation (EDE) which was derived in a number of papers [7, 8, 9, 10]. This new equation is more convenient in many applications than the original BS equation, and we will derive some general formulae connected with this equation. The physical idea behind this approach is that in the case of a loosely bound system of two particles of different masses, the heavy particle spends almost all its life not far from its own mass shell. In such case some kind of Dirac equation for the light particle in an external Coulomb field should be an excellent starting point for the perturbation theory expansion. Then it is convenient to choose the free two-particle propagator in the form of the product of the heavy particle mass shell projector A and the free electron propagator... [Pg.6]

V-UV Application First Excited State of Linear Polyenes. The first electronic absorption band of perfect linear aromatic polyenes (CH)X, or perfect polyacetylene shifts to the red (to lower energies) as the molecule becomes longer, and the bond length alternation (BLA) would be zero. This was discussed as the free-electron molecular orbital theory (FEMO) in Section 3.3. If this particle-in-a-box analysis were correct, then as x > oo, the energy-level difference between ground and first excited state would go to zero. This does not happen, however first, because BLA V 0, next, because these linear polyenes do not remain linear, but are distorted from planarity and linearity for x > 6. [Pg.669]

Many of the new tasks would be at the boundary with materials science. There are some that are obviously applications-oriented, like the electronic theory of high temperature superconduction in the layered copper-oxide perovskites, and other aspects of nanotechnology. There are also fundamental valence problems, such as accounting for the structures and properties of quasiciystals. Why is the association of transition metals and aluminium apparently of central importance How do we deal with the valence properties of systems where the free energy of formation or phase transition is dominated by the entropy term ... [Pg.29]

The perturbational MO method of Longuet-Higgins (11) and Dewar (12), which was thoroughly reviewed by Dewar and Dougherty (6), has been the pencil-and-paper method of choice in numerous applications. More recently, a modified free-electron (MFE) MO approach (13-15) and a valence-bond structure-resonance theory (VBSRT) (7, 16, 17) have been applied to several PAH structure and reactivity problems. A new perturbational variant of the free-electron MO method (PMO F) has also been derived and reported (8, 18). Both PMO F and VBSRT qualify as simple pencil-and-paper procedures. When applied to a compilation of electrophilic substitution parameters (ct+) (19-23), the correlation coefficients of calculated reactivity indexes with cr+ for alternant hydrocarbons are 0.973 and 0.959, respectively (8). In this case, the performance of the PMO F method rivals that of the best available SCF calculations for systems of this size, and that of VBSRT is sufficient for most purposes. [Pg.290]


See other pages where Free electron theory, application is mentioned: [Pg.461]    [Pg.188]    [Pg.179]    [Pg.499]    [Pg.262]    [Pg.26]    [Pg.167]    [Pg.112]    [Pg.256]    [Pg.257]    [Pg.17]    [Pg.5]    [Pg.28]    [Pg.404]    [Pg.60]    [Pg.400]    [Pg.515]    [Pg.17]    [Pg.4]    [Pg.27]    [Pg.139]    [Pg.42]    [Pg.214]    [Pg.162]    [Pg.301]    [Pg.112]    [Pg.704]    [Pg.760]    [Pg.68]    [Pg.175]    [Pg.24]    [Pg.158]   


SEARCH



Applications theory

Electron applications

Electronics applications

Free applications

Free electrons

Free theory

Free-electron theory

© 2024 chempedia.info