Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effective Dirac equation

The most common description of relativistic quantum mechanics for Fermion systems, such as molecules, is the Dirac equation. The Dirac equation is a one-electron equation. In formulating this equation, the terms that arise are intrinsic electron spin, mass defect, spin couplings, and the Darwin term. The Darwin term can be viewed as the effect of an electron making a high-frequency oscillation around its mean position. [Pg.262]

Electronic properties of CNTs, in particular, electronic states, optical spectra, lattice instabilities, and magnetic properties, have been discussed theoretically based on a k p scheme. The motion of electrons in CNTs is described by Weyl s equation for a massless neutrino, which turns into the Dirac equation for a massive electron in the presence of lattice distortions. This leads to interesting properties of CNTs in the presence of a magnetic field including various kinds of Aharonov-Bohm effects and field-induced lattice distortions. [Pg.73]

The Dirac equation automatically includes effects due to electron spin, while this must be introduced in a more or less ad hoc fashion in the Schrodinger equation (the Pauli principle). Furthermore, once the spin-orbit interaction is included, the total electron spin is no longer a good quantum number, an orbital no longer contains an integer number of a and /) spin functions. The proper quantum number is now the total angular momentum obtained by vector addition of the orbital and spin moments. [Pg.209]

Neglect of relativistic effects, by using the Schrodinger instead of the Dirac equation. This is reasonably justified in tlie upper part of the periodic table, but not in the lower half. For some phenomena, like spin-orbit coupling, there is no classical counterpart, and only a relativistic treatment can provide an understanding. [Pg.401]

Moreover, instead of describing the electrons by the Dirac equation, that is fully taking into account relativistic effects due to the high acceleration voltage, a modified form of the Schroedinger equation is used, in which electron energy and wavelength are replaced by the equivalent relativistically corrected expressions [85]. [Pg.140]

Treatment of the relativistic effects within the Douglass-Kroll-Hess (DIDirac equation for most atoms. [Pg.154]

For further details with respect to notation and the derivation of the corresponding Euler-Lagrange equations we refer to [11], By replacing the meson fields by their expectation values one obtains an effective Dirac equation for... [Pg.80]

A particularly interesting feature of the theory [9] is the incorporation of deviations from Coulomb scattering due to the nonvanishing size of the projectile nucleus. The very fact that the theory is based on the Dirac equation and that spin dependences enter nontrivially indicates that quantum mechanics is essential here. Moreover, at the highest energies considered, pair production becomes important, i.e., an effect that does not have a classical equivalent [57]. [Pg.105]

Four-component relativistic molecular calculations are based directly on the Dirac equation. They include both scalar relativistic effects and spin-orbit... [Pg.384]

We now consider how to eliminate either all relativistic effects or exclusively the spin-orbit interaction from the relativistic Hamiltonian. We start from the Dirac equation in the molecular field... [Pg.391]

We now consider how to eliminate the spin-orbit interaction, but not scalar relativistic effects, from the Dirac equation (25). The straightforward elimination of spin-dependent terms, taken to be terms involving the Pauli spin matrices, certainly does not work as it eliminates all kinetic energy as well. A minimum requirement for a correct procedure for the elimination of spin-orbit interaction is that the remaining operator should go to the correct non-relativistic limit. However, this check does not guarantee that some scalar relativistic effects are eliminated as well, as pointed out by Visscher and van Lenthe [44]. Dyall [12] suggested the elimination of the spin-orbit interaction by the non-unitary transformation... [Pg.392]

We then turn to the question of how to eliminate the spin-orbit interaction in four-component relativistic calculations. This allows the assessment of spin-orbit effects on molecular properties within the framework of a single theory. In a previous publication [13], we have shown how the spin-orbit interaction can be eliminated in four-component relativistic calculations of spectroscopic properties by deleting the quaternion imaginary parts of matrix representations of the quaternion modified Dirac equation. We show in this chapter how the application of the same procedure to second-order electric properties takes out spin-forbidden transitions in the spectrum of the mercury atom. Second-order magnetic properties require more care since the straightforward application of the above procedure will extinguish all spin interactions. After careful analysis on how to proceed we... [Pg.402]

At this point, it is appropriate to present a brief discussion on the origin of the FC operator (d function) in the two-component form (Pauli form) of the molecular relativistic Hamiltonian. Many textbooks adopt the point of view that the FC is a relativistic effect, which must be derived from the Dirac equation [50,51]. In other textbooks or review articles it is stressed that the FC is not a relativistic effect and that it can be derived from classical electrodynamics [52,53] disregarding the origin of the gyromagnetic factor g—2. In some textbooks both derivations are presented [54]. The relativistic derivations suffer from the inherent drawbacks in the Pauli expansion, in particular that the Pauli Hamiltonian can only be used in the context of the first-order perturbation theory. Moreover, the origin of the FC term appears to be different depending on whether one uses the ESC method or FW transformation. [Pg.464]

If the kinetic balance condition (5) is fulfilled then the spectrum of the L6vy-Leblond (and Schrodinger) equation is bounded from below. Then, in each case there exists the lowest value of E referred to as the ground state. In effect, this equation may be solved using the variational principle without any restrictions. On the contrary, the spectrum of the Dirac equation is unbounded from below. It contains the negative ( positronic ) continuum. Therefore the variational principle applied unconditionally would lead to the so called variational collapse [2,3,7]. The variational collapse maybe avoided by properly selecting the trial functions so that they fulfil the boundary conditions specific for the bound-state solutions [1]. [Pg.178]

Methods for treating relativistic effects in molecular quantum mechanics have always seemed to me, if I may say so without appearing too impertinent to those who work in the field, a complete dog s breakfast. The difficulty is to know to what question they are supposed to be the answer, in the circumstances in which we find ourselves. We do not know what a relativistically invariant theory applicable to molecular behaviour might look like. As was pointed out to us at the last meeting, the Dirac equation certainly will not do to describe interacting electrons and even at the single particle level, where it seems to work, there is an inconsistency in interpreting its solutions in terms... [Pg.9]

Bethe-Salpeter Equation and the Effective Dirac Equation 5... [Pg.5]

We will describe, in some detail, one such modification, an effective Dirac equation (EDE) which was derived in a number of papers [7, 8, 9, 10]. This new equation is more convenient in many applications than the original BS equation, and we will derive some general formulae connected with this equation. The physical idea behind this approach is that in the case of a loosely bound system of two particles of different masses, the heavy particle spends almost all its life not far from its own mass shell. In such case some kind of Dirac equation for the light particle in an external Coulomb field should be an excellent starting point for the perturbation theory expansion. Then it is convenient to choose the free two-particle propagator in the form of the product of the heavy particle mass shell projector A and the free electron propagator... [Pg.6]

Fig. 1.6. Effective Dirac equation in the external Coulomb field... Fig. 1.6. Effective Dirac equation in the external Coulomb field...
The zero-order effective Dirac equation with a Coulomb source provides only an approximate description of loosely bound states in QED, but the spectrum of this Dirac equation may serve as a good starting point for obtaining more precise results. [Pg.13]

Leading recoil corrections in Za (of order (Za) (m/M)") still may be taken into account with the help of the effective Dirac equation in the external field since these corrections are induced by the one-photon exchange. This is impossible for the higher order recoil terms which reflect the truly relativistic two-body nature of the bound state problem. Technically, respective contributions are induced by the Bethe-Salpeter kernels with at least two-photon exchanges and the whole machinery of relativistic QFT is necessary for their calculation. Calculation of the recoil corrections is simplified by the absence of ultraviolet divergences, connected with the purely radiative loops. [Pg.14]


See other pages where Effective Dirac equation is mentioned: [Pg.171]    [Pg.208]    [Pg.213]    [Pg.194]    [Pg.156]    [Pg.159]    [Pg.383]    [Pg.385]    [Pg.445]    [Pg.446]    [Pg.206]    [Pg.252]    [Pg.206]    [Pg.252]    [Pg.17]    [Pg.279]    [Pg.290]    [Pg.285]    [Pg.286]    [Pg.4]    [Pg.7]    [Pg.9]    [Pg.9]    [Pg.14]   
See also in sourсe #XX -- [ Pg.6 , Pg.9 , Pg.13 , Pg.14 , Pg.21 , Pg.22 , Pg.24 , Pg.37 , Pg.81 , Pg.83 , Pg.165 ]




SEARCH



Dirac equation

© 2024 chempedia.info