Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractional distillation products

There are little or no olefins in crude oil or straight run (direct from crude distillation) products but they are found in refining products, particularly in the fractions coming from conversion of heavy fractions whether or not these processes are thermal or catalytic. The first few compounds of this family are very important raw materials for the petrochemical Industry e.g., ethylene, propylene, and butenes. [Pg.8]

Moreover, certain commercial products should meet specifications including those for fractions distilled at certain temperatures. [Pg.163]

The accuracy depends on the fraction distilled it deviates particularly when determining the initial and final boiling points the average error can exceed 10°C. When calculating the ASTM D 86 curve for gasoline, it is better to use the Edmister (1948) relations. The Riazi and Edmister methods lead to very close results when they are applied to ASTM D 86 calculations for products such as gas oils and kerosene. [Pg.164]

The stocks used for jet fuel production come almost essentially from direct distillation of crude oil. They correspond to the fraction distilled between 145 and 240°C, more or less expanded or contracted according to the circumstances. The yield of such a cut depends largely on the nature of the crude but is always larger than the demand for jet fuel which reaches about 6% of the petroleum market in Europe. For the refiner, the tightest specifications are ... [Pg.229]

P -f lOROH -f 5Br, — 2H3PO, -f lORBr -f 2H,0 The reaction is of general application with primary alcohols (n propyl to n hexadecyl) the yields are over 90 per cent, of the theoretical, but with secondary alcohols the yields are 50-80 per cent. in the latter case a small quantity of high boiling point by-product is also formed which can, however, be readily removed by fractional distillation. The reaction is conveniently carried out in a special all glass apparatus. [Pg.271]

The simpler nitrop>arafIins (nitromethane, nitroethane, 1- and 2-nitroproj)ane) are now cheap commercial products. They are obtained by the vapour phase nitration of the hydrocarbons a gaseous mixture of two mols of hydrocarbon and 1 mol of nitric acid vapour is passed through a narrow reaction tube at 420-476°. Thus with methane at 476° a 13 per cent, conversion into nitro methane is obtained ethane at 420° gives a 9 1 mixture of nitroethane (b.p. 114°) and nitromethane (b.p. 102°) propane at 420° afifords a 21 per cent, yield of a complex mixture of 1- (b.p. 130-6°) and 2-nitropropane (b.p. 120°), nitroethane and nitromethane, which are separated by fractional distillation. [Pg.303]

The experimental procedure to be followed depends upon the products of hydrolysis. If the alcohol and aldehyde are both soluble in water, the reaction product is divided into two parts. One portion is used for the characterisation of the aldehyde by the preparation of a suitable derivative e.g., the 2 4-dinitrophenylhydrazone, semicarbazone or di-medone compound—see Sections 111,70 and 111,74). The other portion is employed for the preparation of a 3 5-dinitrobenzoate, etc. (see Section 111,27) it is advisable first to concentrate the alcohol by dis tillation or to attempt to salt out the alcohol by the addition of solid potassium carbonate. If one of the hydrolysis products is insoluble in the reaction mixture, it is separated and characterised. If both the aldehyde and the alcohol are insoluble, they are removed from the aqueous layer separation is generally most simply effected with sodium bisulphite solution (compare Section Ill,74),but fractional distillation may sometimes be employed. [Pg.328]

Small quantities of the sjunmetrical ketones (CHjjjCO and (CHjCHjCHjjjCO (di-n-propyl ketone) are formed as by-products these can easily be removed by fractional distillation through an efficient column. An excess of the cheaper reagent, acetic acid, is employed the resulting acetone is readily removed by washing with water and little di-n-propyl ketone is formed under these conditions. [Pg.335]

The ester and catalj st are usually employed in equimoleciilar amounts. With R =CjHs (phenyl propionate), the products are o- and p-propiophenol with R = CH3 (phenyl acetate), o- and p-hydroxyacetophenone are formed. The nature of the product is influenced by the structure of the ester, by the temperature, the solvent and the amount of aluminium chloride used generally, low reaction temperatures favour the formation of p-hydroxy ketones. It is usually possible to separate the two hydroxy ketones by fractional distillation under diminished pressure through an efficient fractionating column or by steam distillation the ortho compounds, being chelated, are more volatile in steam It may be mentioned that Clemmensen reduction (compare Section IV,6) of the hj droxy ketones affords an excellent route to the substituted phenols. [Pg.664]

The liquid phosphorus oxychloride, b.p. 107°, is a by-product and is removed by fractional distillation under normal pressure. Unless the b.p. of the acid chloride differs very considerably (say, <] 100°) from that of the phosphorus oxychloride, the acyl halide is liable to contain traces of the latter. In such circumstances it is preferable to use thionyl chloride for the preparation of the acid chloride. [Pg.791]

It will be noted that the by-products are both gaseous. In practice, a slight excess over the theoretical quantity (20-75 per cent.) of thionyl chloride is used some of this is volatilised with the gaseous by-products and the remainder is easily removed by fractional distillation (thionyl chloride has b.p. 77°). [Pg.791]

Germanium can be separated from other metals by fractional distillation of its volatile tetrachloride. The techniques permit the production of germanium of ultra-high purity. [Pg.93]

Ethylbenzene Separation. Ethylbenzene [100-41-4] which is primarily used in the production of styrene, is difficult to separate from mixed Cg aromatics by fractionation. A column of about 350 trays operated at a refluxTeed ratio of 20 is required. No commercial adsorptive unit to accomplish this separation has yet been installed, but the operation has been performed successhiUy in pilot plants (see Table 5). About 99% of the ethylbenzene in the feed was recovered at a purity of 99.7%. This operation, the UOP Ebex process, requires about 40% of the energy that is required by fractional distillation. [Pg.300]

Cmde HCl recovered from production of chlorofluorocarbons by hydrofluorination of chlorocarbons contains unique impurities which can be removed by processes described in References 53—62. CICN—CI2 mixtures generated by reaction of hydrogen cyanide and CI2 during the synthesis of (CICN) can be removed from the by-product HCl, by fractional distillation and recycling (see Cyanides) (59). [Pg.446]

Removal of maleic and fumaric acids from the cmde malononitrile by fractional distillation is impractical because the boiling points differ only slightly. The impurities are therefore converted into high boiling compounds in a conventional reactor by means of a Diels-Alder reaction with a 1,3-diene. The volatile and nonvolatile by-products are finally removed by two vacuum distillations. The by-products are burned. The yield of malononitrile amounts to 66% based on cyanogen chloride or acetonitrile. [Pg.474]

In typical processes, the gaseous effluent from the second-stage oxidation is cooled and fed to an absorber to isolate the MAA as a 20—40% aqueous solution. The MAA may then be concentrated by extraction into a suitable organic solvent such as butyl acetate, toluene, or dibutyl ketone. Azeotropic dehydration and solvent recovery, followed by fractional distillation, is used to obtain the pure product. Water, solvent, and low boiling by-products are removed in a first-stage column. The column bottoms are then fed to a second column where MAA is taken overhead. Esterification to MMA or other esters is readily achieved using acid catalysis. [Pg.253]

The separation of the isomers is carried out by a combination of fractional distillation and crystallization. In a fractional vacuum distillation step, the distillate, obtained at a head temperature of 96—97°C at 1.6 kPa (12 mm Hg), is fairly pure o-nitrotoluene and can be purified further by crystallization. The meta isomer is distilled from a mixture of m- and -nitrotoluene and can be purified further by additional distillation and crystallization steps. The bottoms product from the distillation steps is cooled in a crystallizer to obtain nitrotoluene. [Pg.70]

Petroleum refining, also called petroleum processing, is the recovery and/or generation of usable or salable fractions and products from cmde oil, either by distillation or by chemical reaction of the cmde oil constituents under the effects of heat and pressure. Synthetic cmde oil, produced from tar sand (oil sand) bitumen, and heavier oils are also used as feedstocks in some refineries. Heavy oil conversion (1), as practiced in many refineries, does not fall into the category of synthetic fuels (syncmde) production. In terms of Hquid fuels from coal and other carbonaceous feedstocks, such as oil shale (qv), the concept of a synthetic fuels industry has diminished over the past several years as being uneconomical in light of current petroleum prices. [Pg.200]

Azeotropic and Extractive Distillations. Effective as they are for producing various Hquid fractions, distillation units generally do not produce specific fractions. In order to accommodate the demand for such products, refineries have incorporated azeotropic distillation and extractive distillation in their operations (see Distillation, azeotropic and extractive). [Pg.202]

The cmde product formed from the alkylation of phenol with isoamylene contains principally 2-/ r2 -amylphenol, 4-/ r2 -amylphenol, and 2,4-di-/ r2 -amylphenol. 4-/ r2 Amylphenol is purified to its typical assay of 99+% by fractional distillation. 4-/ r2 -Amylphenol [80-46-6] is commercially available as a soHd, flaked material packaged ia paper or plastic bags (25 kg net weight) or as a molten material ia tank wagon or railcar quantities. [Pg.65]

Gumylphenol. -Cumylphenol (PGP) or 4-(1-methyl-l-phenylethyl)phenol is produced by the alkylation of phenol with a-methylstyrene under acid catalysis. a-Methylstyrene is a by-product from the production of phenol via the cumene oxidation process. The principal by-products from the production of 4-cumylphenol result from the dimerization and intramolecular alkylation of a-methylstyrene to yield substituted indanes. 4-Cumylphenol [599-64-4] is purified by either fractional distillation or crystallization from a suitable solvent. Purification by crystallization results in the easy separation of the substituted indanes from the product and yields a soHd material which is packaged in plastic or paper bags (20 kg net weight). Purification of 4-cumylphenol by fractional distillation yields a product which is almost totally free of any dicumylphenol. The molten product resulting from purification by distillation can be flaked to yield a soHd form however, the soHd form of 4-cumylphenol sinters severely over time. PGP is best stored and transported as a molten material. [Pg.66]

Dimethjlphenol (2,6-xylenol) is produced by the gas phase alkylation of phenol with methanol using modified alumina catalysis. The cmde product contains 2-methylphenol, 2,6-dimethylphenol, a minor amount of 2,4-dimethylphenol, and a mixture of trimethylphenols. The 2,6-dimethylphenol is purified by fractional distillation. The mixture of di- and trimethylphenols is sold as cresyHc acid for use as a solvent. 2,6-Dimethylphenol [576-26-1] is available in 55-gal dmms (208-L) and in bulk shipments in tank wagons and railcars. [Pg.69]

Tall oil rosin is a by-product of paper manufacturing. Raw wood chips are digested under heat and pressure with a mixture of sodium hydroxide and sodium sulfide. Soluble sodium salts of lignin, rosin, and fatty acids are formed, which are removed from the wood pulp as a dark solution. The soaps of the rosin and fatty acids float to the top of the mixture, where they are skimmed off and treated with sulfuric acid to free the rosin and fatty acids. This mixture, known as cmde tall oil (CTO), is refined further to remove color and odor bodies fractional distillation separates the tall oil rosin acids from the fatty acids (see Tall oil). [Pg.138]

Manufacture. Trichloromethanesulfenyl chloride is made commercially by chlorination of carbon disulfide with the careful exclusion of iron or other metals, which cataly2e the chlorinolysis of the C—S bond to produce carbon tetrachloride. Various catalysts, notably iodine and activated carbon, are effective. The product is purified by fractional distillation to a minimum purity of 95%. Continuous processes have been described wherein carbon disulfide chlorination takes place on a granular charcoal column (59,60). A series of patents describes means for yield improvement by chlorination in the presence of dihinctional carbonyl compounds, phosphonates, phosphonites, phosphites, phosphates, or lead acetate (61). [Pg.132]

A typical primary distillation product pattern at a coke-oven tar-processing plant is given in Table 1. At some coke-oven distilleries, only one fraction, designated naphthalene oil, is taken between 180 and 240°C. Two fractions, light creosote or middle oil (230—300°C) and heavy creosote or heavy oil (above 300°C), are taken between the naphthalene oil and pitch. [Pg.338]


See other pages where Fractional distillation products is mentioned: [Pg.284]    [Pg.492]    [Pg.284]    [Pg.492]    [Pg.430]    [Pg.215]    [Pg.48]    [Pg.116]    [Pg.12]    [Pg.172]    [Pg.178]    [Pg.256]    [Pg.198]    [Pg.278]    [Pg.505]    [Pg.409]    [Pg.452]    [Pg.484]    [Pg.67]    [Pg.297]    [Pg.78]    [Pg.211]    [Pg.10]    [Pg.66]    [Pg.68]    [Pg.218]    [Pg.304]    [Pg.336]   
See also in sourсe #XX -- [ Pg.352 ]




SEARCH



Distillation Production

Distillation fractional

Distillation fractions

Product distillations

© 2024 chempedia.info