Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde Lewis acids

Under acidic conditions, furfuryl alcohol polymerizes to black polymers, which eventually become crosslinked and insoluble in the reaction medium. The reaction can be very violent and extreme care must be taken when furfuryl alcohol is mixed with any strong Lewis acid or Brn nstad acid. Copolymer resins are formed with phenoHc compounds, formaldehyde and/or other aldehydes. In dilute aqueous acid, the predominant reaction is a ring opening hydrolysis to form levulinic acid [123-76-2] (52). In acidic alcohoHc media, levulinic esters are formed. The mechanism for this unusual reaction in which the hydroxymethyl group of furfuryl alcohol is converted to the terminal methyl group of levulinic acid has recendy been elucidated (53). [Pg.79]

The cyanoacryhc esters are prepared via the Knoevenagel condensation reaction (5), in which the corresponding alkyl cyanoacetate reacts with formaldehyde in the presence of a basic catalyst to form a low molecular weight polymer. The polymer slurry is acidified and the water is removed. Subsequendy, the polymer is cracked and redistilled at a high temperature onto a suitable stabilizer combination to prevent premature repolymerization. Strong protonic or Lewis acids are normally used in combination with small amounts of a free-radical stabilizer. [Pg.178]

Alkylation involving formaldehyde in the presence of hydrogen chloride is known as chloromethylation (eq. 3). The reagent may be a mixture of formalin and hydrochloric acid, paraformaldehyde and hydrochloric acid, a chloromethyl ether, or a formal. Zinc chloride is commonly employed as a catalyst, although many other Lewis acids can be used. Chloromethylation of sahcyhc acids yields primarily the 5-substituted product 5-chlotomethylsahcyhc acid [10192-87-7] (4). [Pg.285]

Uses ndReactions. Some of the principal uses for P-pinene are for manufacturing terpene resins and for thermal isomerization (pyrolysis) to myrcene. The resins are made by Lewis acid (usuaUy AlCl ) polymerization of P-pinene, either as a homopolymer or as a copolymer with other terpenes such as limonene. P-Pinene polymerizes much easier than a-pinene and the resins are usehil in pressure-sensitive adhesives, hot-melt adhesives and coatings, and elastomeric sealants. One of the first syntheses of a new fragrance chemical from turpentine sources used formaldehyde with P-pinene in a Prins reaction to produce the alcohol, Nopol (26) (59). [Pg.413]

Lewis acids such as BF3 coordinate to carbonyl groups Two reasonable bonding patterns for a formaldehyde BF3 complex are provided below. [Pg.38]

The hetero-Diels-Alder reaction of formaldehyde with 1,3-butadiene has been investigated with the formaldehyde oxygen atom coordinated to BH3 as a model for a Lewis acid [25 bj. Two transition states were located, one with BH3 exo, and one endo, relative to the diene. The former has the lowest energy and the calculated transition-state structure is much less symmetrical than for the uncatalyzed reaction shown in Fig. 8.12. The C-C bond length is calculated to be 0.42 A longer, while the C-0 bond length is 0.23 A shorter, compared to the uncatalyzed reac-... [Pg.315]

The transition state for the BH3-catalyzed reaction was also found. The favored regioisomer and the influence of the Lewis acid on the reactivity was accounted for by a FMO-way of reasoning using as outlined in Fig. 8.11 to the left. The coordination of BH3 to formaldehyde was calculated to lower the LUMO energy by... [Pg.319]

Polyacetals are among the aliphatic polyether family and are produced by the polymerization of formaldehyde. They are termed polyacetals to distinguish them from polyethers produced by polymerizing ethylene oxide, which has two -CH2- groups between the ether group. The polymerization reaction occurs in the presence of a Lewis acid and a small amount of water at room temperature. It could also be catalyzed with amines ... [Pg.341]

The lanthanide salts are unique among Lewis acids in that they can be effective as catalysts in aqueous solution.61 Silyl enol ethers react with formaldehyde and benzaldehyde in water-THF mixtures using lanthanide triflates such as Yb(03SCF3)3. The catalysis reflects the strong affinity of lanthanides for carbonyl oxygen, even in aqueous solution. [Pg.84]

The experimental isotope effects have been measured for the reaction of 2-methylbutene with formaldehyde with diethylaluminum chloride as the catalyst,27 and are consistent with a stepwise mechanism or a concerted mechanism with a large degree of bond formation at the TS. B3LYP/6-31G computations using H+ as the Lewis acid favored a stepwise mechanism. [Pg.871]

Symmetrical piperazines 364 have been obtained from the corresponding 4,5-dihydrazinofurazano[3,4- ]pyraz ne 363 in good yield on reaction with acetic anhydride in the presence of a Lewis acid (Equation 98) <1999CHE499>. When formaldehyde was used, the yield was slightly reduced at 76%. Acid chlorides can also be used in this reaction although the yield drops to 23% when trichloroacetyl chloride is used. [Pg.751]

In the next step of the sequence, the authors sought to introduce a hydroxy-methylene substituent at the unsubstituted 7-position of the enone. This bond construction can be carried out by conducting a Baylis-Hillman reaction with formaldehyde. In this instance, the authors used a modification of the Baylis-Hillman reaction which involves the use of a Lewis acid to activate the enone [26]. Under these conditions, the enone 42 is treated with excess paraformaldehyde in the presence of triethylphosphine (1 equiv), lanthanum triflate (5 mol%), and triethanolamine (50 mol%). It is proposed that the lanthanum triflate forms a complex with the triethanolamine. This complex is able to activate the enone toward 1,4-addition of the nucleophilic catalysts (here, triethylphosphine). In the absence of triethanolamine, the Lewis acid catalyst undergoes nonproductive complexation with the nucleophilic catalyst, leading to diminution of catalysis. Under these conditions, the hydroxymethylene derivative 37 was formed in 70 % yield. In the next step of the sequence, the authors sought to conduct a stereoselective epoxidation of the allylic... [Pg.47]

C. On Fe-Beta-300 the dimethyl ether selectivity was maximum at 240 °C and the hydrocarbons (mostly LC4) selectivities increased in addition to some constant amount of formaldehyde between 240-360 °C (Fig. la). This result confirms the presence of light Bronsted and Lewis acid sites (Fig. 2a) in accordance with FTIR results by pyridine [6], The methyl iodide started to convert to hydrocarbon (C1-C4) at 240 °C but dimethyl ether was not detected. [Pg.343]

S. Kobayashi, Lanthanide Trifluoromethanesulfonates as Stable Lewis Acids in Aqueous Media. Yb(OTf)3 Catalyzed Hydroxymethylation Reaction of Silyl Enol Ethers with Commercial Formaldehyde Solution Chem Lett. 1991, 2187-2190. [Pg.11]

An interesting preparation of alkyl carboxylates in high yield (Table 3.14) from the sodium salt of the carboxylic acids under mild phase-transfer catalytic conditions involves their reaction with alkyl chlorosulphate [50] and has been used with success in the preparation of alkyl esters derived from p-lactam antibiotics. The procedure is also excellent for the production of chloromethyl esters, particularly where the carboxylic acids will not withstand the classical Lewis acid-catalysed procedure using an acid chloride and formaldehyde, or where the use of iodochloromethane [51] results in the formation of the bis(acyloxy)methane. The procedure has been applied with some success to the synthesis of chloromethyl A-protected a-amino carboxylates [52],... [Pg.95]

Shackelford and co-workers studied the 1,2-addition of 2,2-dinitropropanol, 2,2,2-trinitroethanol, and 2-fluoro-2,2-dinitroethanol across the double bonds of vinyl ethers. These reactions are Lewis acid catalyzed because of the weak nucleophilic character of alcohols which contain two or three electron-withdrawing groups on the carbon p to the hydroxy functionality. Base catalysis is precluded since alkaline conditions lead to deformylation with the formation of formaldehyde and the nitronate salt. [Pg.34]

The ene reaction is strongly catalyzed by Lewis acids such as aluminum chloride and diethylaluminum chloride204 Coordination by the aluminum at the carbonyl group increases the electrophihcity of the conjugated system and allows reaction to occur below room temperature, as illustrated in Entry 6. Intramolecular ene reactions can be carried out under either thermal (Entry 3) or catalyzed (Entry 7) conditions 205 Formaldehyde in acidic solution can form allylic alcohols, as in entry 1. Other carbonyl ene reactions are carried out with Lewis acid catalysts. Aromatic aldehydes and acrolein undergo the ene reaction with activated alkenes such as enol ethers in the presence of Yb(fod)3 206 Sc(03SCF3)3 has also been used to catalyze ene reactions.207... [Pg.401]

There are a number of other variations of the Friedel-Crafts reaction which are useful in synthesis. The introduction of chloromethyl substituents is brought about by reaction with formaldehyde in concentrated hydrochloric acid and a Lewis acid, especially zinc chloride.56 The reaction proceeds with benzene and derivatives with electron-releasing groups. The reactive electrophile is probably the chloromethylium ion. [Pg.710]

Cationic polymerization of formaldehyde (which should be carried out under the driest possible conditions to avoid transfer reactions) can be initiated with protic acids, Lewis acids (see Sect. 3.2.1.1), or other compounds that yield cations such as acetyl perchlorate or iodine ... [Pg.204]

Alkylation with Carbonyl Compounds The Prins Reaction. Carbonyl compounds react with alkenes in the presence of Brpnsted acids to form a complex mixture of products known as the Prins reaction. The use of appropriate reaction conditions, solvents, and catalysts allows one to perform selective syntheses. Characteristically formaldehyde is the principal aldehyde used. Mineral acids (sulfuric acid, phosphoric acid), p-toluenesulfonic acid, and ion exchange resins are the most frequent catalysts. Certain Lewis acids (BF3, ZnCl2, SnCl4) are, however, also effective. [Pg.228]

Starting ingredients may be formaldehyde or the cyclic trimer rrioxane, CH2OCH2OCH2O. Both form polymers of similar properties. Boron trifluoride of other Lewis acids are used to promote polymerization where trioxane is the raw material. [Pg.1436]


See other pages where Formaldehyde Lewis acids is mentioned: [Pg.44]    [Pg.124]    [Pg.316]    [Pg.316]    [Pg.319]    [Pg.116]    [Pg.872]    [Pg.244]    [Pg.343]    [Pg.4]    [Pg.127]    [Pg.1071]    [Pg.94]    [Pg.376]    [Pg.5]    [Pg.5]    [Pg.9]    [Pg.220]    [Pg.248]    [Pg.110]    [Pg.853]   
See also in sourсe #XX -- [ Pg.315 ]

See also in sourсe #XX -- [ Pg.315 ]

See also in sourсe #XX -- [ Pg.313 ]

See also in sourсe #XX -- [ Pg.315 ]

See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Formaldehyde Lewis acid catalyzed alkene addition

© 2024 chempedia.info