Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow-through column measurement

Flow-Through Column Measurements. All apparatus in contact with the wastewater solution was made of plastic (either Teflon or polypropylene) to avoid adsorption on glass walls. A Teflon cylinder with bed dimensions of 56 mm long x 25... [Pg.36]

The major attribute that distinguishes planar techniques from column chromatography is that in the former separation and detection are discontinuous ( offline )- In column chromatography analytes are carried through the entire column and monitored at the end, usually by flow-through detectors measuring changes in some physical characteristics of the effluent (optical... [Pg.218]

In a solubility experiment the solubility of the compound of interest is measured in the presence and absence of dissolved humic materials. Two techniques were used to measure solubility a shake and filter method similar to that used by Yalkowsky, and a flow through column technique similar to that used by May et al. 9 The measured solubilities of a number of compounds in our experiments were always higher in the presence of humic materials. This increase in the solubility is due to the binding of the compound by humic materials. In the presence of humic materials the measured solubility consists of two fractions free and bound. The free concentration should be the same in the presence or absence of humic materials. The difference between the solubilities of the compound in the presence and absence of humic materials is therefore a measurement of the bound fraction. [Pg.217]

Differential procedures are of interest when looking for the very small differences in the polymer molar mass distributions. The differentiation can be made so that (<) The samples are simultaneously applied into two identical columns and the effluent flows through adjacent measuring cells of a differential detector ... [Pg.292]

Once the chromatographic separation on the column has been conducted, the composition of the eluent at the column end must be determined using a detector. In all HPLC detectors, the eluent flows through a measuring cell where the change of a physical or chemical property with elution time is detected. The most important parameter of the detector is sensitivity, which is influenced by the noise and baseline drift, the absolute detection limit of the detector, the linearity, the detector volume (band broadening), and the effects of pressure, temperature and flow (pulsation, gas bubbles). [Pg.13]

The function (vm + Kvs) is termed the plate volume and so the flow through the column will be measured in plate volumes instead of milliliters. The plate volume is defined as that volume of mobile phase that can contain all the solute in the plate at the equilibrium concentration of the solute in the mobile phase. The meaning of plate volume must be understood, as it is an important concept and is extensively used in different aspects of chromatography theory. [Pg.23]

If the mobile phase is a liquid, and can be considered incompressible, then the volume of the mobile phase eluted from the column, between the injection and the peak maximum, can be easily obtained from the product of the flow rate and the retention time. For more precise measurements, the volume of eluent can be directly measured volumetrically by means of a burette or other suitable volume measuring vessel that is placed at the end of the column. If the mobile phase is compressible, however, the volume of mobile phase that passes through the column, measured at the exit, will no longer represent the true retention volume, as the volume flow will increase continuously along the column as the pressure falls. This problem was solved by James and Martin [3], who derived a correction factor that allowed the actual retention volume to be calculated from the retention volume measured at the column outlet at atmospheric pressure, and a function of the inlet/outlet pressure ratio. This correction factor can be derived as follows. [Pg.29]

Glaser and Lichtenstein (G3) measured the liquid residence-time distribution for cocurrent downward flow of gas and liquid in columns of -in., 2-in., and 1-ft diameter packed with porous or nonporous -pg-in. or -in. cylindrical packings. The fluid media were an aqueous calcium chloride solution and air in one series of experiments and kerosene and hydrogen in another. Pulses of radioactive tracer (carbon-12, phosphorous-32, or rubi-dium-86) were injected outside the column, and the effluent concentration measured by Geiger counter. Axial dispersion was characterized by variability (defined as the standard deviation of residence time divided by the average residence time), and corrections for end effects were included in the analysis. The experiments indicate no effect of bed diameter upon variability. For a packed bed of porous particles, variability was found to consist of three components (1) Variability due to bulk flow through the bed... [Pg.98]

Larkins et al. (L2) visually observed flow patterns and measured pressure drop and liquid holdup for cocurrent downflow of gas and liquid through beds of spheres, cylinders, and Raschig rings of diameters from 3 mm to f in. in experimental columns of 2- and 4-in. diameter, as well as in a commercial unit several feet in diameter. The fluid media were air, carbon dioxide, or natural gas and water, water containing methylcellulose, water containing soap, ethylene glycol, kerosene, lubricating oil, or hexane. [Pg.101]

The schematic diagram of the experimental setup is shown in Fig. 2 and the experimental conditions are shown in Table 2. Each gas was controlled its flow rate by a mass flow controller and supplied to the module at a pressure sli tly higher than the atmospheric pressure. Absorbent solution was suppUed to the module by a circulation pump. A small amount of absorbent solution, which did not permeate the membrane, overflowed and then it was introduced to the upper part of the permeate side. Permeation and returning liquid fell down to the reservoir and it was recycled to the feed side. The dry gas through condenser was discharged from the vacuum pump, and its flow rate was measured by a digital soap-film flow meter. The gas composition was determined by a gas chromatograph (Yanaco, GC-2800, column Porapak Q for CO2 and (N2+O2) analysis, and molecular sieve 5A for N2 and O2 analysis). The performance of the module was calculated by the same procedure reported in our previous paper [1]. [Pg.410]

Measurement of Performance The amount of useful work that any fluid-transport device performs is the product of (1) the mass rate of fluid flow through it and (2) the total pressure differential measured immediately before and after the device, usually expressed in the height of column of fluid equivalent under adiabatic conditions. The first of these quantities is normally referred to as capacity, and the second is known as head. [Pg.25]

Earlier experiments involved the collection of SEC effluent aliquots to measure solution viscosity in batches with the very time consuming Ubbelohde drop-time type viscometers. A continuous capillary type viscometer was first proposed for SEC by Ouano. Basically, as shown in Figure 1, a single capillary tube with a differential pressure transducer was used to monitor the viscosity of SEC effluent at the exit of the SEC column. As liquid continuously flows through the capillary (but not through the pressure transducer), the detected pressure drop (AP) across the capillary provides the measure for the fluid viscosity (h) according to the Poiseuille s viscosity law ... [Pg.82]


See other pages where Flow-through column measurement is mentioned: [Pg.240]    [Pg.732]    [Pg.354]    [Pg.457]    [Pg.4758]    [Pg.203]    [Pg.387]    [Pg.1303]    [Pg.217]    [Pg.38]    [Pg.747]    [Pg.185]    [Pg.209]    [Pg.266]    [Pg.828]    [Pg.797]    [Pg.520]    [Pg.255]    [Pg.14]    [Pg.104]    [Pg.142]    [Pg.351]    [Pg.9]    [Pg.1147]    [Pg.191]    [Pg.199]    [Pg.366]    [Pg.400]    [Pg.273]    [Pg.6]    [Pg.220]    [Pg.279]    [Pg.494]    [Pg.496]    [Pg.151]    [Pg.105]    [Pg.167]    [Pg.195]   


SEARCH



Flow measurement

Flow measuring

Flow-through

Flow-through column measurement procedure

© 2024 chempedia.info