Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers molar mass distributions

Polymer. The polymer determines the properties of the hot melt variations are possible in molar mass distribution and in the chemical composition (copolymers). The polymer is the main component and backbone of hot-melt adhesive blend it gives strength, cohesion and mechanical properties (filmability, flexibility). The most common polymers in the woodworking area are EVA and APAO. [Pg.1075]

Table 9.9 (6) gives some guidelines for proper SEC separation conditions when analyzing polymer standards with narrow molar mass distribution on a single 30-cm column. The conditions have to be adjusted when running industrial polymers (which are normally much wider in molar mass distribution). Depending on the width of the MMD, concentrations can be increased by a factor of 3 to 10 for such samples. As a general rule, it is advisable to keep the concentration of the injected solution lower than c [ j] < 0.2. [Pg.283]

In this stage of the investigation, poly(methyl methacrylates) (PMMAs) were selected as the polymeric probes of intermediate polarity. Polymers of medium broad molar mass distribution and of low tacticity (14) were a gift of Dr. W. Wunderlich of Rohm Co., Darmstadt, Germany. Their molar masses ranged from 1.6 X 10" to 6.13 X 10 g-mol. For some comparative tests, narrow polystyrene standards from Pressure Co. (Pittsburgh, PA) were used. [Pg.448]

Huber, A. (1992). In Analysis of Polymers/Molar-Mass and Molar-Mass Distribution of Polymers, Polyelectrolytes and Latices (W.-M. Kulicke, ed.), Hiithig Wepf Verlag, 61, 248. [Pg.497]

The molar mass distribution of hyperbranched polymers is, therefore, always larger than diat of titeir linear homologues and tends toward infinity when conversion becomes close to 1. The use of a B3, comonomer, acting as a chain limiter and core molecule, helps in reducing polydispersity and controlling the molar mass of the final polymer.197... [Pg.57]

The effect is that the polymer molecules are separated into fractions. These are measured by an appropriate detector located at the end of the column, and the detector records the response as a peak on a chart. The chromatogram thus consists of a series of peaks corresponding to different elution volumes, the shortest elution volume being due to the largest molar mass polymer molecules within the sample. Details of the molar mass distribution can be determined from the size and number of the individual peaks in the chromatogram. An example of a gel permeation chromatogram is shown as Figure 6.4. [Pg.91]

The viscosity level in the range of the Newtonian viscosity r 0 of the flow curve can be determined on the basis of molecular models. For this, just a single point measurement in the zero-shear viscosity range is necessary, when applying the Mark-Houwink relationship. This zero-shear viscosity, q0, depends on the concentration and molar mass of the dissolved polymer for a given solvent, pressure, temperature, molar mass distribution Mw/Mn, i.e. [Pg.15]

Polymers in solution or as melts exhibit a shear rate dependent viscosity above a critical shear rate, ycrit. The region in which the viscosity is a decreasing function of shear rate is called the non-Newtonian or power-law region. As the concentration increases, for constant molar mass, the value of ycrit is shifted to lower shear rates. Below ycrit the solution viscosity is independent of shear rate and is called the zero-shear viscosity, q0. Flow curves (plots of log q vs. log y) for a very high molar mass polystyrene in toluene at various concentrations are presented in Fig. 9. The transition from the shear-rate independent to the shear-rate dependent viscosity occurs over a relatively small region due to the narrow molar mass distribution of the PS sample. [Pg.23]

SEC-GC-FID, according to Figure 7.40, has been used to carry out the simultaneous determination of the polymer average molecular masses and molar mass distribution and the concentration of additives [984]. The effluent was split and adsorbed on PTV packing material before GC analysis. The choice of PTV... [Pg.557]

For a free-radical polymerization and a condensation polymerization process, explain why the molar mass distribution of the polymer product will be different depending on whether a mixed-flow or a plug-flow reactor is used. What will be the difference in the distribution of molar mass ... [Pg.96]

Reaction mechanisms and molar mass distributions The molar mass distribution of a synthetic polymer strongly depends on the polymerization mechanism, and sole knowledge of some average molar mass may be of little help if the distribution function, or at least its second moment, is not known. To illustrate this, we will discuss two prominent distribution functions, as examples the Poisson distribution and the Schulz-Flory distribution, and refer the reader to the literature [7] for a more detailed discussion. [Pg.211]

SEC or gel permeation chromatography (GPC) is one of the widely used chromatographic techniques [56,57]. In contrast to the already discussed colligative and scattering methods it is not an absolute method and requires proper calibration with some known polymer standards. One obtains not only the average molar masses (M , Mw, Mz) but the complete molar mass distributions. [Pg.228]

Many polymer properties can be expressed as power laws of the molar mass. Some examples for such scaling laws that have already been discussed are the scaling law of the diffusion coefficient (Equation (57)) and the Mark-Houwink-Sakurada equation for the intrinsic viscosity (Equation (36)). Under certain circumstances scaling laws can be employed advantageously for the determination of molar mass distributions, as shown by the following two examples. [Pg.243]

The more time-consuming task is the establishment of the scaling law, which requires a series of polymer samples of narrow molar mass distribution and known molar mass. Their sedimentation coefficients have to be measured as a function of concentration and extrapolated back to c — 0 in order to obtain So(M) (Figure 18). [Pg.246]

The same authors then discuss the determination of the entire molar mass distribution from sedimentation velocity runs via scaling laws for the polymer polystyrene in cyclohexane, where the scaling law is also known [78] ... [Pg.246]

Mass spectrometry can be used to measure the molar mass distribution (MMD) of a polymer sample by simply measuring the intensity, Nt, of each mass spectral peak with mass m . This is due to the fact that mass spectrometers are equipped with a detector that gives the same response if an ion with mass 1 kDa or 100 Da (actually any mass) strikes against it. In other words, the detector measures the number fraction and this implies that Nt also represents the number of chains with mass m,. Thus, the number-average molar mass, Mn, is given by ... [Pg.304]

Copper bromide and pentakis-A-(heptadecafluoroundecyl)-l,4,7-triazeheptane (1 in Figure 10.9), along with an initiator, ethyl-2-bromoisobutyrate (2 in Figure 10.9), in a perfluoromethylcyclohexane-toluene biphase efficiently catalyse the polymerization of methyl methacrylate, with a conversion of 76 % in 5 h at 90 °C. The resultant polymer has a Mn = 11100 and a molar mass distribution of 1.30. After polymerization, the reaction was cooled to ambient temperature, the organic layer removed and found to contain a copper level of 0.088 % (as opposed to 1.5% if all the catalyst were to have remained in the polymer). A further toluene solution of monomer and 2 could be added,... [Pg.214]

Keywords. Solution properties. Regularly branched structures. Randomly and hyperbranched polymers. Shrinking factors. Fractal dimensions. Osmotic modulus of semi-di-lute solutions. Molar mass distributions, SEC/MALLS/VISC chromatography... [Pg.113]

The dissolved polymer molecules are separated on the basis of their size relative to the pores of a packing material contained in a column. The chromatograms can be converted to molar mass distributions, average molar masses, Mn, M, and M, long-chain branching and its distribution. [Pg.170]

In general they found both enhanced reaction rates and polymers with lower poly-dispersities in the presence of ultrasound provided by both bath and probe systems. Higher ultrasonic intensities resulted in narrower molar mass distributions. [Pg.213]

Mixture of two or more fractions of the same polymer, each of which has a different molar-mass distribution. [Pg.188]

Note 2 The LCST depends upon pressure and the molar-mass distributions of the constituent polymer(s). [Pg.196]

Polymer network comprising polymer chains having two significantly different molar-mass distributions between adjacent junction points. [Pg.222]


See other pages where Polymers molar mass distributions is mentioned: [Pg.451]    [Pg.185]    [Pg.555]    [Pg.559]    [Pg.451]    [Pg.185]    [Pg.555]    [Pg.559]    [Pg.7]    [Pg.263]    [Pg.268]    [Pg.406]    [Pg.429]    [Pg.206]    [Pg.206]    [Pg.227]    [Pg.228]    [Pg.241]    [Pg.242]    [Pg.244]    [Pg.287]    [Pg.401]    [Pg.490]    [Pg.740]    [Pg.741]    [Pg.285]    [Pg.24]    [Pg.60]    [Pg.207]    [Pg.303]    [Pg.138]   
See also in sourсe #XX -- [ Pg.303 ]




SEARCH



Mass polymers

Molar distribution

Molar mass

Molar mass distribution

Molar mass distribution of polymers

Molarity molar masses

Polymer distribution

Polymer molar mass

© 2024 chempedia.info