Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavin adenine dinucleotide oxidases

Riboflavin-5 -Adenosine Diphosphate. Riboflavin-5 -adenosine diphosphate [146-14-5] (flavin—adenine dinucleotide, FAD), C27H33N9O15P2 (2), mol wt 785.56, was first isolated in 1938 from the D-amino acid oxidase as its prosthetic group (95), where it was postulated to be... [Pg.80]

A homogeneous electrochemical enzyme immunoassay for 2,4-dinitrophenol-aminocaproic acid (DNP-ACA), has been developed based on antibody inhibition of enzyme conversion from the apo- to the holo- form Apoglucose oxidase was used as the enzyme label. This enzyme is inactive until binding of flavin adenine dinucleotide (FAD) to form the holoenzyme which is active. Hydrogen peroxide is the enzymatic product which is detected electrochemically. Because antibody bound apoenzyme cannot bind FAD, the production of HjOj is a measure of the concentration of free DNP-ACA in the sample. [Pg.34]

Prosthetic groups Flavine Adenine Dinucleotide (FAD) Glycine oxidase, Fumaric hydrogenase, Xanthine oxidase... [Pg.332]

Glucose oxidase (GOD) is a typical flavin enzyme with flavin adenine dinucleotide (FAD) as redox prosthetic group. Its biological function is to catalyze glucose to form gluconolaction, while the enzyme itself is turned from GOD(FAD) to GOD(FADH2). GOD was used to prepare biosensors in extensive fields. Many materials that can be used to immobilize other proteins can be suitable for GOD. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electrocatalyze... [Pg.588]

XOD is one of the most complex flavoproteins and is composed of two identical and catalytically independent subunits each subunit contains one molybdenium center, two iron sulfur centers, and flavine adenine dinucleotide. The enzyme activity is due to a complicated interaction of FAD, molybdenium, iron, and labile sulfur moieties at or near the active site [260], It can be used to detect xanthine and hypoxanthine by immobilizing xanthine oxidase on a glassy carbon paste electrode [261], The elements are based on the chronoamperometric monitoring of the current that occurs due to the oxidation of the hydrogen peroxide which liberates during the enzymatic reaction. The biosensor showed linear dependence in the concentration range between 5.0 X 10 7 and 4.0 X 10-5M for xanthine and 2.0 X 10 5 and 8.0 X 10 5M for hypoxanthine, respectively. The detection limit values were estimated as 1.0 X 10 7 M for xanthine and 5.3 X 10-6M for hypoxanthine, respectively. Li used DNA to embed xanthine oxidase and obtained the electrochemical response of FAD and molybdenum center of xanthine oxidase [262], Moreover, the enzyme keeps its native catalytic activity to hypoxanthine in the DNA film. So the biosensor for hypoxanthine can be based on... [Pg.591]

Figure 9.6 Sequence of electron carriers in the electron transfer chain. The positions of entry into the chain from metabolism of glucose, glutamine, fatty acyl-CoA, glycerol 3-phosphate and others that are oxidised by the Krebs cycle are shown. The chain is usually considered to start with NADH and finish with cytochrome oxidase. FMN is flavin mononucleotide FAD is flavin adenine dinucleotide. Figure 9.6 Sequence of electron carriers in the electron transfer chain. The positions of entry into the chain from metabolism of glucose, glutamine, fatty acyl-CoA, glycerol 3-phosphate and others that are oxidised by the Krebs cycle are shown. The chain is usually considered to start with NADH and finish with cytochrome oxidase. FMN is flavin mononucleotide FAD is flavin adenine dinucleotide.
LSDl, also known as BHCllO, is the first lysine specific demethylase that was discovered. It has been assigned to group I of lysine demethylases (KDMl) [90, 91]. LSDl contains an amine oxidase domain responsible of the enzymatic activity and has been isolated as a stable component from several histone modifying complexes. The enzymatic characterization of this protein revealed that FAD (flavine adenine dinucleotide) is required as a cofactor for the removal of the methyl group. Furthermore, LSDl requires a protonated nitrogen in order to initiate demethylation so that this enzyme is only able to demethylate mono- or dimethylated substrates but not trimethylated substrates [98, 99]. [Pg.41]

There are demethylases which act like amine oxidases that are dependent in their mechanism on their cosubstrate flavine adenine dinucleotide (FAD). So far, lysine-specific demethylase 1 (LSDl) is the only representative of this class [62]. LSDl, as an amine oxidase leads to oxidation of the methylated lysine residue, generating an imine intermediate, while the protein-bound cosubstrate FAD is reduced to FAD H2. In a second step, the imine intermediate is hydrolyzed to produce the demethylated histone lysine residue and formaldehyde. Importantly the reduced cosubstrate is regenerated to its oxidized form by molecular oxygen, producing hydrogen peroxide (Figure 5.7) [62, 63]. [Pg.111]

Amine oxidases catalyze the oxidative deamination of both xenobiotic and biogenic amines, and thus have many critical biological functions. Two distinct classes differ in the nature of their prosthetic groups [1]. The flavin-(FAD flavin adenine dinucleotide)-dependent amine oxidases include monoamine oxidases (MAO A and B) and polyamine oxidases. Amine oxidases not containing FAD, the so-called semicarbazide-sensitive amine oxidases (SSAO), include both plasma amine oxidases and tissue amine oxidases. These contain quinonoid structures as redox cofactors that are derived from posttranslationally modified tyrosine or tryptophan side chains, topaoquinone frequently playing this role [2]. [Pg.662]

Monoamine oxidase (MAO) (E.C. 1.4.3.4) is an enzyme found in all tissues and almost all cells, bound to the outer mitochondrial membrane. Its active site contains flavine adenine dinucleotide (FAD), which is bound to the cysteine of a -Ser-Gly-Gly-Cys-Tyr sequence. Ser and Tyr in this sequence suggest a nucleophilic environment, and histidine is necessary for the activity of the enzyme. Thiol reagents inhibit MAO. There are at least two classes of MAO binding sites, either on the same molecule or on different isozymes. They are designated as MAO-A, which is specific for 5-HT (serotonin) as a substrate, and MAO-B, which prefers phenylethylamine. Similarly, MAO inhibitors show a preference for one or the other active site, as discussed below. [Pg.497]

Au NPs (1.2 nm) that include a single /V-hydroxysuccinimide-active ester functionality were modified with 2-amino-ethyl-flavin adenine dinucleotide, (5), and apo-glucose oxidase was reconstituted on the FAD cofactor units to yield the Au NP-GOx hybrid (Fig. 12.6a). The resulting hybrids were linked to the Au surface by different dithiol bridging units (8), (9), and (10). The resulting NP-functionalized glucose oxidase, GOx, exhibited electrical contact with the electrode surface, and the Au NPs... [Pg.341]

Xanthine oxidase, which requires Fe, Mo and flavin adenine dinucleotide (FAD) as co-factors, is capable of oxidizing lipids via the production of superoxide radicals. It represents about 20% of the MFGM protein and part is readily lost from the membrane, e.g. on cooling isoelectric focusing... [Pg.106]

Small amounts of amino acids are degraded by L- and D-amino acid oxidases that utilize flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) as coenzyme, respectively. [Pg.373]

It is well known that the flavin adenine dinucleotide redox centers of many oxidases are electrically inaccessible due to the insulating effect of the surrounding protein thus, direct electron transfer from the reduced enzyme to a conventional electrode is negligible. In the present work, a variety of polymeric materials have been developed which can facilitate a flow of electrons from the flavin redox centers of oxidases to an electrode. Highly flexible siloxane and ethylene oxide polymers containing covalently attached redox moieties, such as ferrocene, are shown to be capable of rapidly re-oxidizing the reduced flavoenzyme. [Pg.117]

Willner et al. [52] have created some elegant interfacial supramolecular assemblies to address this issue by removing the non-covalently bound flavin adenine dinucleotide (FAD) redox center from glucose oxidase and immobilizing the enzyme on a tether consisting of cystamine chemisorbed on a gold surface, a pyrroloquinoline quinone (PQQ) link and FAD. The mediator potential and electron transfer distances of this assembly were carefully chosen so that transfer of electrons from the FAD to the PQQ and to the electrode is very fast. A maximum rate of 900 150 s-1 for the enzymatic reaction within this monolayer assembly was obtained, which is indistinguishable from the value of about 1000 s-1 obtained for the enzyme in solution. While monolayers can offer molecular-level control of the interfacial structure, the... [Pg.193]


See other pages where Flavin adenine dinucleotide oxidases is mentioned: [Pg.26]    [Pg.865]    [Pg.602]    [Pg.612]    [Pg.157]    [Pg.965]    [Pg.419]    [Pg.570]    [Pg.572]    [Pg.232]    [Pg.162]    [Pg.87]    [Pg.27]    [Pg.27]    [Pg.31]    [Pg.34]    [Pg.148]    [Pg.171]    [Pg.79]    [Pg.321]    [Pg.337]    [Pg.344]    [Pg.434]    [Pg.654]    [Pg.135]    [Pg.74]    [Pg.187]    [Pg.346]    [Pg.232]    [Pg.92]    [Pg.147]    [Pg.285]    [Pg.140]    [Pg.77]   


SEARCH



Dinucleotide

Flavin adenine

Flavin adenine dinucleotide

Flavin adenine dinucleotide oxidase with

Flavine adenine dinucleotide

Flavines

Flavins

© 2024 chempedia.info