Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

First reaction method

This leaves us with the first-reaction method. follows. [Pg.142]

The computer time per reaction of this algorithms scales with system size as 0(log S) where S is the number of sites in the system. (Note that for all kMC algorithms the total number of reactions in a system is of the order 0(S). So for the first-reaction method the computer time for a whole simulation scales as 0(S log 5).) This logarithmic dependence originates from the data-structures, which are normally trees, that are used to store the reactions and their times. [Pg.143]

Our dynamic model is based on the first reaction method (FRM) [13], where a queue of increasing time steps associated to the occurrence of the all electronic processes in the polymer diode is used to follow the time evolution of the charges in the device. For each electronic process there is a waiting time given by ... [Pg.158]

In order to fully account for finite surface mobilities and the heterogeneous surface structure, we have to employ a stochastic description of the surface processes. The kinetic Monte Carlo method enables the incorporation of structural details at an atomistic level. This method has been apphed successfully in the field of heterogeneous (electro-) catalysis [59 1,65] and is further discussed in the chapter by Phil Ross in this book. In the model, hexagonal grids represent catalyst particles. The active sites are randomly distributed on the grid. Adsorbates are considered to bind to on-top sites. The first reaction method was used [66,67]. [Pg.57]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The first synthesis of sorbic acid was from crotonaldehyde [4170-30-3] and malonic acid [141-82-2] in pyridine in 32% yield (2,17,18)- The yield can be improved with the use of malonic acid salts (19). One of the first commercial methods involved the reaction of ketene and crotonaldehyde in the presence of boron trifluoride in ether at 0°C (20,21). A P-lactone (4) forms and then reacts with acid, giving a 70% yield. [Pg.283]

Styrene is a colorless Hquid with an aromatic odor. Important physical properties of styrene are shown in Table 1 (1). Styrene is infinitely soluble in acetone, carbon tetrachloride, benzene, ether, / -heptane, and ethanol. Nearly all of the commercial styrene is consumed in polymerization and copolymerization processes. Common methods in plastics technology such as mass, suspension, solution, and emulsion polymerization can be used to manufacture polystyrene and styrene copolymers with different physical characteristics, but processes relating to the first two methods account for most of the styrene polymers currendy (ca 1996) being manufactured (2—8). Polymerization generally takes place by free-radical reactions initiated thermally or catalyticaHy. Polymerization occurs slowly even at ambient temperatures. It can be retarded by inhibitors. [Pg.476]

Because of the time and expense involved, biological assays are used primarily for research purposes. The first chemical method for assaying L-ascorbic acid was the titration with 2,6-dichlorophenolindophenol solution (76). This method is not appHcable in the presence of a variety of interfering substances, eg, reduced metal ions, sulfites, tannins, or colored dyes. This 2,6-dichlorophenolindophenol method and other chemical and physiochemical methods are based on the reducing character of L-ascorbic acid (77). Colorimetric reactions with metal ions as weU as other redox systems, eg, potassium hexacyanoferrate(III), methylene blue, chloramine, etc, have been used for the assay, but they are unspecific because of interferences from a large number of reducing substances contained in foods and natural products (78). These methods have been used extensively in fish research (79). A specific photometric method for the assay of vitamin C in biological samples is based on the oxidation of ascorbic acid to dehydroascorbic acid with 2,4-dinitrophenylhydrazine (80). In the microfluorometric method, ascorbic acid is oxidized to dehydroascorbic acid in the presence of charcoal. The oxidized form is reacted with o-phenylenediamine to produce a fluorescent compound that is detected with an excitation maximum of ca 350 nm and an emission maximum of ca 430 nm (81). [Pg.17]

Separation and Purification of Isomers. 1-Butene and isobutylene caimot be economically separated into pure components by conventional distHlation because they are close boiling isomers (see Table 1 and Eig. 1). 2-Butene can be separated from the other two isomers by simple distHlation. There are four types of separation methods avaHable (/) selective removal of isobutylene by polymeriza tion and separation of 1-butene (2) use of addition reactions with alcohol, acids, or water to selectively produce pure isobutylene and 1-butene (3) selective extraction of isobutylene with a Hquid solvent, usuaHy an acid and (4) physical separation of isobutylene from 1-butene by absorbents. The first two methods take advantage of the reactivity of isobutylene. Eor example, isobutylene reacts about 1000 times faster than 1-butene. Some 1-butene also reacts and gets separated with isobutylene, but recovery of high purity is possible. The choice of a particular method depends on the product slate requirements of the manufacturer. In any case, 2-butene is first separated from the other two isomers by simple distHlation. [Pg.368]

This alternative procedure is called the xyz method. The amount of change hy the first reaction is x, hy the second y, and hy the third z. For the same example,... [Pg.690]

The oxidation of alcohols with lead tetraacetate was the first reaction used for oxygenation of an angular methyl group in steroids. It is a simple and efficient method and produces tetrahydrofuran derivatives directly from alcohols. [Pg.240]

Just as before, the first step in balancing a reaction must be to decide the products. Again, experiment provides the answer. Let us reconsider one of the same examples we balanced previously by the half-reaction method. For these we already know the products. [Pg.219]

In contrast to phthalocyanines (tetra- or octasubstituted) in which the isoindoline units carry all the same substituents, reports of phthalocyanines with lower symmetry, which have been prepared by using two different phthalonitriles, have rarely appeared. This is due to the problems which are associated with their preparation and separation. For the preparation of unsymmetrical phthalocyanines with two different isoindoline units four methods are known the polymer support route,300 " 303 via enlargement of subphthalocyanines,304 " 308 via reaction ofl,3,3-trichloroisoindoline and isoindolinediimine309,310 and the statistical condensation followed by a separation of the products.111,311 319 Using the first two methods, only one product, formed by three identical and one other isoindoline unit, should be produced. The third method can be used to prepare a linear product with D2h symmetry formed by two identical isoindoline units. For the synthesis of the other type of unsymmetrical phthalocyanine the method of statistical condensation must be chosen. In such a condensation of two phthalonitriles the formation of six different phthalocyanines320 is possible. [Pg.737]

The kinetics of the decomposition of the 4-chlorobenzenediazonium ion under strict exclusion of oxygen (< 5 ppb 02, Schwarz and Zollinger, 1981) are compatible with the CIDNP results, subject to the reservation mentioned already, namely that CIDNP as a probe does not necessarily give results for all pathways, whereas kinetic measurements are normally related to the sum of all competitive mechanisms. The first reaction observable with conventional kinetic methods is the formation of the (E )-diazoate (t1/2 ca. 200 min), but it is also first-order with respect to the diazonium ion concentration. [Pg.204]

It is probable that the test of Wolski88 for sulphoxides depends on the first reaction. He used acetyl chloride or bromide the product from the former gave a red colour with nitrite ion, absorption maximum at 545 nm, and the latter gave a yellowish-orange colour directly. The method was used also by Besyadetskaya and colleagues89 to determine dimethyl sulphoxide in ointments. [Pg.115]

The first reported method for the direct phosphonomethylation of amino acids used phosphorous acid and formaldehyde (7). Typically, aqueous solutions of the amino acid, phosphorous acid, and concentrated (coned) hydrochloric acid were heated to reflux with excess aqueous formaldehyde or paraformaldehyde. The reaction proceeded equally well with either primary or secondary amines. However, with primary amines such as glycine, the yield of glyphosate was usually quite low, even at reduced temperature, and 1 1 1 stoichiometry. The resulting glyphosate acid (GLYH3) reacted faster than glycine, so the bis-phosphonomethyl adduct 2 always predominated. With excess phosphorous acid and formaldehyde, good isolated yields of this 2 1 adduct 2 have been obtained (8). [Pg.18]

P can not be obtained because the reaction rate constants such as ki, kj, and kj are unknown. Therefore, these constants are obtained using the pseudo-first-order reaction methods as following procedures. [Pg.347]

The first reaction filmed by X-rays was the recombination of photodisso-ciated iodine in a CCI4 solution [18, 19, 49]. As this reaction is considered a prototype chemical reaction, a considerable effort was made to study it. Experimental techniques such as linear [50-52] and nonlinear [53-55] spectroscopy were used, as well as theoretical methods such as quantum chemistry [56] and molecular dynamics simulation [57]. A fair understanding of the dissociation and recombination dynamics resulted. However, a fascinating challenge remained to film atomic motions during the reaction. This was done in the following way. [Pg.274]

To understand the effect of the protein on this modeled reaction mechanism, we selected the first reaction step, H2O2 reduction by a glutathione molecule for further investigations using the ONIOM (QM MM) method [28], The computational setup was similar to the structural study, but the effects of the additional water molecules were added from the active-site model. It is assumed that the reaction coordinate is the same as in the active-site study and no additional reaction pathways were investigated. An important point of the present ONIOM study is the full optimization of QM MM transition states using the novel ONIOM algorithms [9],... [Pg.41]

One may clearly extend the technique to include as many reactions as desired. The irreversibility of the reactions permits one to solve the rate expressions one at a time in recursive fashion. If the first reaction alone is other than first-order, one may still proceed to solve the system of equations in this fashion once the initial equation has been solved to determine A(t). However, if any reaction other than the first is not first-order, one must generally resort to numerical methods to obtain a solution. [Pg.152]

Weber [381] has described a kinetic method for studying the degradation of Parathion in sea water. Weber observed two pathways whereby Parathion is hydrolysed. The first reaction proceeds via dearylation with loss ofp-nitrophenol ... [Pg.423]

The intermediary formation of the Mg-diene complex is confirmed by a two-step reaction method, namely in the first step a solution of 1,3-diene is electrochemically reduced with magnesium electrode in the absence of the ester. After a sufficient amount of electricity is passed, the current is terminated and the ester is added to the solution. The fact that the coupling product is also formed by this two-step method strongly supports the formation of the intermediate Mg-diene complex. [Pg.768]

We choose as a first example the evaporation of spring water from the Sierra Nevada mountains of California and Nevada, USA, as modeled by Garrels and Mackenzie (1967). Their hand calculation, the first reaction path traced in geochemistry (see Chapter 1), provided the inspiration for Helgeson s (1968 and later) development of computerized methods for reaction modeling. [Pg.357]

Although this equation can be balanced by the half-reaction method, it also can be balanced by inspection. First notice that all of the N is present in N,04(g) in the products. This implies that there are two HN03(aq) 2HN03(l)- N204(g) + H20(l) + 02(g)... [Pg.153]

Here we will consider just one of the several approaches available to solve this problem. The four half-reactions (and their associated E° values) that are used in this method to come up with the missing E° value are given below. (Note the E° for the first reaction was determined in example 23-1)... [Pg.551]


See other pages where First reaction method is mentioned: [Pg.142]    [Pg.92]    [Pg.754]    [Pg.265]    [Pg.142]    [Pg.92]    [Pg.754]    [Pg.265]    [Pg.232]    [Pg.196]    [Pg.30]    [Pg.33]    [Pg.90]    [Pg.268]    [Pg.145]    [Pg.23]    [Pg.64]    [Pg.82]    [Pg.59]    [Pg.115]    [Pg.386]    [Pg.241]    [Pg.111]    [Pg.331]    [Pg.248]    [Pg.130]    [Pg.45]    [Pg.79]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



First reaction

Reaction methods

© 2024 chempedia.info