Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fire tubes heat transfer

In an indirect bath heat exchanger, the heating medium provides Iil u to an intermediary fluid, which then transfers the heat to the fluid h)cuig heated. An example of this is the common line heater used on many gas well streams to keep the temperature above the hydrate formal ion lem perature. A fire tube heats a water bath, which provides heat to tlie v.all siieam flowing through a coil immersed in the bath. Details pertaining to dcsi jit of indirect bath heaters are presented in Chapter 5. [Pg.48]

WlMPRESS, N. (1978) Chem. Eng., NY 85 (May 22nd) 95. Generalized method predicts fired-heater performance. WOLVERINE (1984) Wolverine Tube Heat Transfer Data Book—Low Fin Tubes (Wolverine Division of UOP Inc.). [Pg.785]

The hydrogen producing reactions are limited by thermodynamic equilibrium. The reactions must take place under carefully controlled external firing, with heat transfer taking place from the combustion gas in the firebox to the process gas in the catalyst-filled tubes. Carbon monoxide in the product gas is converted almost completely to hydrogen in the downstream catalytic reactor. [Pg.127]

In fossil fuel-fired boilers there are two regions defined by the mode of heat transfer. Fuel is burned in the furnace or radiant section of the boiler. The walls of this section of the boiler are constmcted of vertical, or near vertical, tubes in which water is boiled. Heat is transferred radiatively from the fire to the waterwaH of the boiler. When the hot gas leaves the radiant section of the boiler, it goes to the convective section. In the convective section, heat is transferred to tubes in the gas path. Superheating and reheating are in the convective section of the boiler. The economizer, which can be considered as a gas-heated feedwater heater, is the last element in the convective zone of the boiler. [Pg.358]

The hydrocarbon gas feedstock and Hquid sulfur are separately preheated in an externally fired tubular heater. When the gas reaches 480—650°C, it joins the vaporized sulfur. A special venturi nozzle can be used for mixing the two streams (81). The mixed stream flows through a radiantly-heated pipe cod, where some reaction takes place, before entering an adiabatic catalytic reactor. In the adiabatic reactor, the reaction goes to over 90% completion at a temperature of 580—635°C and a pressure of approximately 250—500 kPa (2.5—5.0 atm). Heater tubes are constmcted from high alloy stainless steel and reportedly must be replaced every 2—3 years (79,82—84). Furnaces are generally fired with natural gas or refinery gas, and heat transfer to the tube coil occurs primarily by radiation with no direct contact of the flames on the tubes. Design of the furnace is critical to achieve uniform heat around the tubes to avoid rapid corrosion at "hot spots."... [Pg.30]

The inside of the convection tubes rarely foul, but occasionally the Hquid unsaturates in feedstocks tend to polymerize and stick to the walls and thus reduce the heat transfer. This soft coke is normally removed by mechanical means. In limited cases, the coke can also be burnt off with air and steam. Normally, the outside surface of the convection section fouls due to dust and particles in the flue gas. Periodically (6 to 36 months), the outside surface is cleaned by steam lancing. With Hquid fuel firing, the surface may require more frequent cleaning. [Pg.439]

FIG. 23-1 Heat transfer to stirred tank reactors, a) Jacket, (h) Internal coils, (c) Internal tubes, (d) External heat exchanger, (e) External reflux condenser. if) Fired heater. (Walas, Reaction Kinetics for Chemical Engineers, McGraw-Hill, 1959). [Pg.2070]

In the vei tical-tube single-row double-fired heater, a single row of vertical tubes is arrayed along the center plane of the radiant section that is fired from both sides. Usually this type of heater has an overhead horizontal convec tion bank. Although it is the most expensive of the fired heater designs, it provides the most uniform heat transfer to the tubes. Duties are 21 to 132 GJ/h (20 to 125 10 Btu/h) per cell (twin-cell designs are not unusual). [Pg.2402]

A horizontally fired burner is located at one end of the heater. The flame extends along the central longitudinal axis of the heater. In this way the wickets are exposed to the open flame and can be subjected to a maximum rate of radiant heat transfer. The tubes should be sufficiently far away from the flame to prevent hot spots or flame pinching. [Pg.38]

A griod example of convection in a process application is the transici of heat from a fire tube to a liquid, as in an oil treater. A current is set up between the cold and the w arm parts of the water transferring the heal from the surface of the fire tube to the bulk liquid. [Pg.9]

A fire tube contains a flame burning inside a piece of pipe which is in turn surrounded by the process fluid. In this situation, there is radiant and convective heat transfer from the flame to the inside surface of the fire tube, conductive heat transfer through the wall thickness of the tube, and convective heat transfer from the outside surface of that tube to the oil being treated. It would be difficult in such a simation to solve for the heat transfer in terms of an overall heat transfer coefficient. Rather, what is most often done is to size the fire tube by using a heat flux rate. The heat flux rate represents the amount of heat that can be transferred from the fire tube to the process per unit area of outside surface of the fire tube. Common heat flux rates are given in Table 2-11. [Pg.44]

Bath-type heat exchangers can be either direct or indirect. In a direct bath exchanger, the heating medium exchanges heat directly with the fluid to be heated. The heat source for bath heaters can be a coil of a hot heat medium or steam, waste heat exhaust from an engine or turbine, or heat from electric immersion heaters. An example of a bath heater is an emulsion heater-treater of the type discussed in Volume 1. In this case, a fire tube immersed in the oil transfers heat directly to the oil bath. The calculation of heat duties and sizing of fire tubes for this type of heat exchanger can be calculated fom Chapter 2. [Pg.47]

In another ineident of the same nature, the oil caught fire. A furnace supplied heat transfer oil to four reboilers. One was isolated for repair and then pressure-tested. The water was drained out of the shell, but the drain valve was 8 in. above the bottom tube plate, and so a layer of water was left in the reboiler (Figure 12-2). [Pg.258]

Fire tube boilers (shell boilers or shell and tube boilers) convert heat from burning fuel within a furnace (combustion chamber, firebox, or furnace tube) to generate either HW or steam. Fire tube boilers are designed to direct the combustion gases through tubes (held within tube sheets) that are surrounded by BW, thus providing for a greater heat-transfer surface area and improved efficiency. [Pg.29]

A mechanism of heat transfer in which heat energy is transmitted by convection current motion through gases and liquids. Part of the heat-transfer process in a boiler is by convection whereby the circulation of water carries heat from the tube near the fire to the drum and surrounding areas. [Pg.727]

The tube inside heat transfer coefficients and pressure drop can be calculated using the conventional methods for flow inside tubes see Section 12.8, and Volume 1, Chapter 9. If the unit is being used as a vaporiser the existence of two-phase flow in some of the tubes must be taken into account. Bergman (1978b) gives a quick method for estimating two-phase pressure drop in the tubes of fired heaters. [Pg.774]

Transition Zone III is of utmost importance, since the formation of dry spots is accompanied by a dramatic change in the heat transfer mechanism. In such units as gas-fired boilers, the dry spots may cause the tube wall temperature to approach the temperature of the heating gas. However, before the tube wall temperature reaches a steady-state value, the tensile strength of the tube wall is reduced, and rupture may occur. This phenomenon, called burn-out, may also occur at any point along the tube wall if the wall heat flux qmt is large enough so that a vapor film forms between the tube wall and the liquid surface. [Pg.41]

Fired heaters are extensively used in the oil and gas industry to process the raw materials into usable products in a variety of processes. Fuel gas is normally used to fire the units which heat process fluids. Control of the burner system is critical in order to avoid firebox explosions and uncontrolled heater fires due to malfunctions and deterioration of the heat transfer tubes. Microprocessor computers are used to manage and control the burner system. [Pg.114]


See other pages where Fire tubes heat transfer is mentioned: [Pg.321]    [Pg.421]    [Pg.320]    [Pg.6]    [Pg.7]    [Pg.513]    [Pg.419]    [Pg.527]    [Pg.528]    [Pg.2398]    [Pg.150]    [Pg.335]    [Pg.44]    [Pg.82]    [Pg.226]    [Pg.386]    [Pg.35]    [Pg.93]    [Pg.348]    [Pg.249]    [Pg.40]    [Pg.356]    [Pg.364]    [Pg.286]    [Pg.98]    [Pg.29]    [Pg.39]   
See also in sourсe #XX -- [ Pg.44 , Pg.45 ]




SEARCH



Fire tubes

Heat transfer tubes

© 2024 chempedia.info