Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filtration diffusive

Diffusion filtration is another contributor to the process of sand filtration. Diffusion in this case is that of Brownian motion obtained by thermal agitation forces. This compliments the mechanism in sand filtration. Diffusion increases the contact probability between the particles themselves as well as between the latter and the filter mass. This effect occurs both in water in motion and in stagnant water, and is quite important in the mechanisms of agglomeration of particles (e.g., flocculation). [Pg.252]

Renkin EM. (1954). Filtration, diffusion and molecular sieving through porous cellulose membranes. J Gen Physiol 38 225-238. [Pg.332]

Filtration separates components according to their size. Efficiency depends on the shape and compressibility of the particles, the viscosity of the liquid phase and the driving force, which is the pressure created by overpressure or by vacuum. Filtration can be performed either as dead-end filtration, where the feed stream flows perpendicular to the filter surface (Lee, 1989) or as tangential flow filtration, where the feed stream flows parallel to the filter and the filtrate diffuses across it. Examples of the former are the continuous rotaiy vacuum dram filter, where a rotaiy vacuum filter has a filter medium covering the surface of a rotating drum and the filtrate is drawn through the dram by an... [Pg.227]

Filtration. Diffusion occurs through aqueous pores. [Pg.80]

E.M. Renkin, Filtration, Diffusion and Molecular Sieving Through Porous Cellulose Membranes, J. Gen. Physiol. 38, 225 (1955). [Pg.86]

Fig. 5. Drug elimination by the kidneys. Schematic diagram of a nephron to illustrate the sites of filtration, diffusion, and active... Fig. 5. Drug elimination by the kidneys. Schematic diagram of a nephron to illustrate the sites of filtration, diffusion, and active...
Vol. 1 Polymer Engineering Vol. 2 Filtration Post-Treatment Processes Vol. 3 Multicomponent Diffusion Vol. 4 Transport in Porous Catalysts... [Pg.199]

Deep Bed Filters. Deep bed filtration is fundamentally different from cake filtration both in principle and appHcation. The filter medium (Fig. 4) is a deep bed with pore size much greater than the particles it is meant to remove. No cake should form on the face of the medium. Particles penetrate into the medium where they separate due to gravity settling, diffusion, and inertial forces attachment to the medium is due to molecular and electrostatic forces. Sand is the most common medium and multimedia filters also use garnet and anthracite. The filtration process is cycHc, ie, when the bed is full of sohds and the pressure drop across the bed is excessive, the flow is intermpted and solids are backwashed from the bed, sometimes aided by air scouring or wash jets. [Pg.387]

Materials may be absorbed by a variety of mechanisms. Depending on the nature of the material and the site of absorption, there may be passive diffusion, filtration processes, faciHtated diffusion, active transport and the formation of microvesicles for the cell membrane (pinocytosis) (61). EoUowing absorption, materials are transported in the circulation either free or bound to constituents such as plasma proteins or blood cells. The degree of binding of the absorbed material may influence the availabiHty of the material to tissue, or limit its elimination from the body (excretion). After passing from plasma to tissues, materials may have a variety of effects and fates, including no effect on the tissue, production of injury, biochemical conversion (metaboli2ed or biotransformed), or excretion (eg, from liver and kidney). [Pg.230]

The individual membrane filtration processes are defined chiefly by pore size although there is some overlap. The smallest membrane pore size is used in reverse osmosis (0.0005—0.002 microns), followed by nanofiltration (0.001—0.01 microns), ultrafHtration (0.002—0.1 microns), and microfiltration (0.1—1.0 microns). Electro dialysis uses electric current to transport ionic species across a membrane. Micro- and ultrafHtration rely on pore size for material separation, reverse osmosis on pore size and diffusion, and electro dialysis on diffusion. Separation efficiency does not reach 100% for any of these membrane processes. For example, when used to desalinate—soften water for industrial processes, the concentrated salt stream (reject) from reverse osmosis can be 20% of the total flow. These concentrated, yet stiH dilute streams, may require additional treatment or special disposal methods. [Pg.163]

Porous carbon and graphite are used ia filtration of hydrogen fluoride streams, caustic solutions, and molten sodium cyanide ia diffusion of chlorine iato molten aluminum to produce aluminum chloride and ia aeration of waste sulfite Hquors from pulp and paper manufacture and sewage streams. [Pg.516]

Thorough displacement washing is possible in a nutsche if the wash solvent is added before the cake begins to be exposed to air displacement of filtrate. If washing needs to oe more effective, an agitator can be provided in the nutsche vessel to reslurry the cake to allow adequate diffusion of solute from the solids. [Pg.1709]

Cross-flow-elec trofiltratiou (CF-EF) is the multifunctional separation process which combines the electrophoretic migration present in elec trofiltration with the particle diffusion and radial-migration forces present in cross-flow filtration (CFF) (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears later in this section) in order to reduce further the formation of filter cake. Cross-flow-electrofiltratiou can even eliminate the formation of filter cake entirely. This process should find application in the filtration of suspensions when there are charged particles as well as a relatively low conduc tivity in the continuous phase. Low conductivity in the continuous phase is necessary in order to minimize the amount of elec trical power necessaiy to sustain the elec tric field. Low-ionic-strength aqueous media and nonaqueous suspending media fulfill this requirement. [Pg.2008]

FIG. 22-29 Qualitative effects of Reynolds number and applied-electric-field strength on the filtration permeate flux J. Dashed lines indicate large particles (radial migration dominates) solid lines, small particles (particle diffusion dominates). [Pg.2010]

The collection technique involves the removal of particles from the air stream. The two principal methods are filtration and impaction. Filtrahon consists of collecting particles on a filter surface by three processes—direct interception, inertial impaction, and diffusion (5). Filtration attempts to remove a very high percentage of the mass and number of particles by these three processes. Any size classification is done by a preclassifier, such as an impactor, before the particle stream reaches the surface of the filter. [Pg.189]

Thermo-diffusion calculations analyze the migration of hazardous material from compartment to compartment to release in containment. These calculations use physico-chemical parameters to predict the retention of hazardous materials by filtration, deposition on cold surfaces and other retention processes in the operation. Containment event trees aid in determining the amount, duration and types of hazardous material that leaves the containment. [Pg.237]

Skaret presents a general air and contaminant mass flow model for a space where the air volume, ventilation, filtration, and contaminant emission have been divided for both the zones and the turbulent mixing (diffusion) between the zones is included. A time-dependent behavior of the concentration in the zones with constant pollutant flow rate is presented. [Pg.624]

Here the permeability of the membrane to the solute is defined in terms of reflection coefficients aQ and for osmosis and filtration respectively. When (To = 1, then perfect semi-permeabihty results. in Eq. (4) is the diffusive permeabihty of the membrane, while (Cj) is the average composition of the solute in the membrane. [Pg.780]

The filtrate from this first batch will comprise a solution of 180 to 270 kg of unprecipitated acetylsalicylic acid (1.0 to 1.5 mols), 510 kg of acetic anhydrice (5.0 mols), 600 kg of acetic acid (10.0 mols) (obtained as a by-product in the acetylation step) and 1,200 kg of the diluent toluene. Into this filtrate, at a temperature of 15° to 25°C, ketene gas is now passed through a sparger tube or diffuser plate, with good agitation, until a weight increase of 420.5 kg of ketene (10 mols) occurs. The reaction mixture wiil now contain 180-270 kg of unprecipitated acetylsalicylic acid (1.0-1.5 mols) and 1,532 kg of acetic anhydride (15 mols) in 1,200 kg of toluene. This mother liquor is recycled to the first step of the process for reaction with another batch of 1,382 kg of salicylic acid. On recirculating the mother liquor, the yield of pure acetylsalicylic acid is 1,780 to 1,795 kg per batch. [Pg.108]

Porous articles for filtration, aeration, diffusion, etc. can also be made from materials having the same chemical inertness as those used for the low-porosity articles such as storage vessels. The pore size of these articles can be controlled to suit the operating conditions encountered. [Pg.912]


See other pages where Filtration diffusive is mentioned: [Pg.392]    [Pg.57]    [Pg.508]    [Pg.503]    [Pg.193]    [Pg.392]    [Pg.57]    [Pg.508]    [Pg.503]    [Pg.193]    [Pg.188]    [Pg.141]    [Pg.141]    [Pg.384]    [Pg.404]    [Pg.266]    [Pg.266]    [Pg.27]    [Pg.440]    [Pg.104]    [Pg.1600]    [Pg.2009]    [Pg.308]    [Pg.253]    [Pg.560]    [Pg.1264]    [Pg.417]    [Pg.429]    [Pg.370]    [Pg.370]   
See also in sourсe #XX -- [ Pg.507 ]




SEARCH



© 2024 chempedia.info