Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanostructured fillers

Increasing price of crude oil has built up pressure on tire and automobile industry to develop low rolling-resistant tire with better traction. Combination of carbon and silica with coupling agent (dual filler technology) shows low RR with better traction and skid resistance in tire tread compound. Carbon black developed by plasma process and nanostructure black are other new significant developments in filler technology. [Pg.922]

Defects in carbon nanostructures can be classified into (a) structural defects, (b) topological defects, (c) high curvature and (d) non-sp2 carbon defects. Even slight changes within the carbon nanostructure can modify the chemical and physical properties. Some defects in carbon systems results in high chemical reactivity, mainly due to the accumulation of electrons in the vicinity of the dopant. These defects can be used as anchoring sites in order to make the carbon nanostructures more compatible with ceramic or polymer matrices, thus enhancing interactions between carbon structures (filler) and the host matrices. [Pg.76]

In the beginning, functionalization reactions were applied to fullerenes [1], later to CNTs [4,3], and recently to graphene [5]. Although both functionalization approaches have clear differences, they share the same intrinsic objective the creation of defects or doping within the surface of the carbon nanostructures in order to facilitate the interactions between the matrix and the filler. [Pg.79]

Fig. 8.1 Electron micrographs of different nanocarbon composite types (top) and their schematic representation (bottom). The nanocarbons can be dispersed as a filler (left), combined with macroscopic fibers in a hierarchical composite (middle), or assembled as a continuous nanostructured fiber (right). Micrographs from references [7, 8, 9], with kind permission from Elsevier (2010, 2008, 2009). Fig. 8.1 Electron micrographs of different nanocarbon composite types (top) and their schematic representation (bottom). The nanocarbons can be dispersed as a filler (left), combined with macroscopic fibers in a hierarchical composite (middle), or assembled as a continuous nanostructured fiber (right). Micrographs from references [7, 8, 9], with kind permission from Elsevier (2010, 2008, 2009).
Up to now, most efforts have been directed towards the preparation of uniformly sized spherical MIP particles in the micrometre range. This is the obvious consequence of the need for this kind of materials as fillers for high-performance chromatographic columns, capillaries for electrophoresis, cartridges for solid-phase extractions and other applications requiring selective stationary phases. Additionally though, strategies for the preparation of other more sophisticated MIP forms, such as membranes, (nano)monoliths, films, micro- and nanostructured surfaces etc. [Pg.30]

Firstly it can be used for obtaining layers with a thickness of several mono-layers to introduce and to distribute uniformly very low amounts of admixtures. This may be important for the surface of sorption and catalytic, polymeric, metal, composition and other materials. Secondly, the production of relatively thick layers, on the order of tens of nm. In this case a thickness of nanolayers is controlled with an accuracy of one monolayer. This can be important in the optimization of layer composition and thickness (for example when kernel pigments and fillers are produced). Thirdly the ML method can be used to influence the matrix surface and nanolayer phase transformation in core-shell systems. It can be used for example for intensification of chemical solid reactions, and in sintering of ceramic powders. Fourthly, the ML method can be used for the formation of multicomponent mono- and nanolayers to create surface nanostructures with uniformly varied thicknesses (for example optical applications), or with synergistic properties (for example flame retardants), or with a combination of various functions (polyfunctional coatings). Nanoelectronics can also utilize multicomponent mono- and nanolayers. [Pg.40]

Recently, Zhang et al. have successfully grown carbon nanotubes on clay platelet to form 3D nanostructured filler (55). This hybrid... [Pg.96]

Recently, Vaia et al. [8] reported a new process for direct polymer intercalation based on a predominantly enthalpic mechanism. By maximization of the number of polymer host interactions, the unfavorable loss of conformational entropy associated with intercalation of the polymer can be overcome leading to new intercalated nanostructures. They also reported that this type of intercalated polymer chain adopted a collapsed, two-dimensional conformation and did not reveal the characteristic bulk glass transition. This behavior was qualitatively different from that exhibited by the bulk polymer and was attributed to the confinement of the polymer chains between the host s layers. These types of materials have important implications not only in the synthesis and property areas, where ultrathin polymer films confined between adsorbed surfaces are involved. These include polymer filler interactions in polymer composites, polymer adhesives, lubricants, and interfacial agents between immiscible phases. [Pg.178]

In this regard, preferential use of NIPU in hybrid systems based on copolymerization and modification of other polymer materials seems promising. Using an interpenetrating polymer network (IPN) principle in production of composite materials provides a unique possibility to regulate their both micro- and nanostructures and properties. By changing the IPN formation conditions (sequence of polymerization processes, ratio of components, temperature, pressure, catalyst content, introduction of filler, ionic group, etc.), it is possible to obtain a material with desirable properties. [Pg.153]

Another area in which preceramic polymers can be utilized effectively is as binders for ceramic powders in near net shaping fabrication processes, such as compression or injection molding with subsequent sintering. Alternatively, an active filler and a polymer [67,68], as reported by Greil and Seibold, can be used in such fabrication. Other potential applications of preceramic polymers is in the general area of coatings, especially for carbon-carbon composites [69], and in the synthesis of nanostructured ceramic particles and composites [70-73]. [Pg.372]

Nanocomposites are materials that are created by introducing nanostructured materials (often referred to as filler) into a macroscopic sample material (often referred to as matrix). After adding nanostructured materials to the matrix material, the resulting nanocomposite may exhibit drastically enhanced properties such as electrical and thermal conductivity, optical, dielectric and mechanical properties. [Pg.183]

In-process modification includes metal addition, development of inversion blacks or nanostructure blacks, and carbon black-silica dual phase fillers. [Pg.437]

Fibers have been widely used in polymeric composites to improve mechanical properties. Cellulose is the major substance obtained from vegetable fibers, and applications for cellulose fiber-reinforced polymers have again come to the forefront with the focus on renewable raw materials. Hydrophilic cellulose fibers are very compatible with most natural polymers. The reinforcement of starch with ceUulose fibers is a perfect example of a polymer from renewable recourses (PFRR). The reinforcement of polymers using rigid fillers is another common method in the production and processing of polymeric composites. The interest in new nanoscale fillers has rapidly grown in the last two decades, since it was discovered that a nanostructure could be built from a polymer and layered nanoclay. This new nanocomposite showed dramatic improvement in mechanical properties with low filler content. Various starch-based nano-composites have been developed. [Pg.122]

The interest in new nanoscale fillers has rapidly grown in the last two decades, since it was discovered that a nanostructure could be built from a polymer and layered nano-filler, such as nanoclay. This new technique has been widely used in starch-based materials. [Pg.141]

Artificial nanostructured fillers are carbon nanofibers or nanotubes (CNT) and carbon black, which can act as reinforcements and which lead to an improved electrical conductivity of the compound. Nanostructured silica can be used as an antistick additive and nanosized silver particles exhibit an antibacterial effect when added to polymeric compounds. [Pg.336]

Recently, nanostructured carbon-based fillers such as Ceo [313,314], single-wall carbon nanotubes, carbon nanohorns (CNHs), carbon nanoballoons (CNBs), ketjenblack (KB), conductive grade and graphitized carbon black (CB) [184], graphene [348], and nanodiamonds [349] have been used to prepare PLA-based composites. These fillers enhance the crystalUza-tion ofPLLA [184,313,314].Nanocomposites incorporating fibrous MWCNTsandSWCNTs are discussed in the section on fibre-reinforced plastics (section 8.12.3). [Pg.211]

Abstract Nanostructured organic-inorganic composites have been the source of much attention in both academic and industrial research in recent years. Composite materials, by definition, result from the combination of two distinctly dissimilar materials, the overall behavior determined not only by properties of the individual components, but by the degree of dispersion and interfacial properties. It is termed a nanocomposite when at least one of the phases within the composite has a size-scale of order of nanometers. Nanocomposites have shown improved performance (compared to matrices containing more conventional, micron-sized fillers) due to their high sirnface area and significant aspect ratios - the properties being achieved at much lower additive concentrations compared to conventional systems. [Pg.30]


See other pages where Nanostructured fillers is mentioned: [Pg.84]    [Pg.208]    [Pg.266]    [Pg.52]    [Pg.84]    [Pg.208]    [Pg.266]    [Pg.52]    [Pg.58]    [Pg.922]    [Pg.193]    [Pg.72]    [Pg.76]    [Pg.541]    [Pg.159]    [Pg.160]    [Pg.478]    [Pg.431]    [Pg.260]    [Pg.385]    [Pg.159]    [Pg.160]    [Pg.199]    [Pg.263]    [Pg.686]    [Pg.382]    [Pg.285]    [Pg.5]    [Pg.336]    [Pg.331]    [Pg.219]    [Pg.58]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



© 2024 chempedia.info