Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filaments microfilaments

Two major types of muscle fibers are found in humans white (anaerobic) and red (aerobic). The former are particularly used in sprints and the latter in prolonged aerobic exercise. During a sprint, muscle uses creatine phosphate and glycolysis as energy sources in the marathon, oxidation of fatty acids is of major importance during the later phases. Nonmuscle cells perform various types of mechanical work carried out by the structures constituting the cytoskeleton. These strucmres include actin filaments (microfilaments), micrombules (composed primarily of a- mbulin and p-mbulin), and intermediate filaments. The latter include keratins, vimentin-like proteins, neurofilaments, and lamins. [Pg.578]

Thread-like actin filaments (microfilaments) spread through the hepatocytes creating a three-dimensional network and ensuring both form and stability of the cell. They also guarantee the shape of the microvilli and fenestrae as well as supporting the mechanical functions of the canaliculi. In addition, they influence the viscosity of the cytoplasm. Cytochalasin A depolymerizes... [Pg.28]

Hemidesmosomes (HDs) are membrane-associated adhesive junctions linked to the filamentous networks of the epithelial cell cytoskeleton and the lamina lucida ( light green/ dark blue region in Fig. 5.1). The cytoskeleton of all mammalian cells is composed of three kinds of filaments microfilaments, intermediate filaments and microtubules. Microfilaments... [Pg.67]

The ability of a cell to hold or to change shape and to move organelles within it depends on the existence of a cytoskeleton, comprising actin filaments (microfilaments), microtubules, and intermediate filaments (IPs) capable of transmitting force. Actin filaments and microtubules contain predominantly actin and tubulin, respectively. (Table 21-1). The diameter of intermediate filaments (10 nm) is between that of actin filaments (6-7 nm) and microtubules (25 nm). They are structural proteins not directly involved in motion. [Pg.453]

F-actin (also called microfilament or actin filament) is a double-stranded, right-handed helix with 14 actin molecules per strand and turn. F-actin has a diameter of 8 nM and is polarized with a pointed (minus) and a barbed (plus) end. [Pg.493]

The major types of cytoskeletal filaments are 7-nm-thick microfilaments. 25-nm-thick microtubules, and 10-nm-thick intermediate filaments (IPs). These are respectively composed of actin, tubulin, and a variety of interrelated sparsely soluble fibrous proteins termed intermediate filament proteins. In addition, thick myosin filaments are present in large numbers in skeletal and heart muscle cells and in small numbers in many other types of eukaryotic cells. [Pg.2]

The cytoskeleton also contains different accessory proteins, which, in accordance with their affinities and functions, are designated as microtubule-associated proteins (MAPs), actin-binding proteins (ABPs), intermediate-filament-associated proteins (IFAPs), and myosin-binding proteins. This chapter is focused on those parts of the cytoskeleton that are composed of microfilaments and microtubules and their associated proteins. The subject of intermediate filaments is dealt with in detail in Volume 2. [Pg.2]

The Cytoskeleton—Microtubules and Microfilaments Patterns of Arrangement of Actin Filaments in Animal Cells... [Pg.25]

Blood platelets are key players in the blood-clotting mechanism. These tiny fragments of cytoplasm are shed into the circulation from the surface of megakaryocytes located in the bone marrow. When the lining of a blood vessel is injured, activated platelets release clotting factors, adhere to each other and to damaged surfaces, and send out numerous filopodia. The shape changes that occur in activated platelets are the result of actin polymerization. Before activation, there are no microfilaments because profilin binds to G-actin and prevents its polymerization. After activation, profilin dissociates from G-actin, and bundles and networks of F-actin filaments rapidly appear within the platelet. [Pg.27]

The Locomotion of Amoeba The Locomotion of Fibroblastic Cell Types The Locomotion of Leukocytes The Behavior of Locomoting Cells The Role of the Cytoskeleton in Cell Locomotion The Microtubule-Based Cytoskeleton The Intermediate Filament-Based Cytoskeleton The Microfilament-Based Cytoskeleton The Organization of Microfilaments in Cells Microfilament Dynamics and Cell Locomotion Sites of Lamellar Protrusion May Be Determined by the Nucleation of Actin Polymerization... [Pg.77]

Nonmuscle cells perform mechanical work, including self-propulsion, morphogenesis, cleavage, endocytosis, exocytosis, intracellular transport, and changing cell shape. These cellular functions are carried out by an extensive intracellular network of filamentous structures constimting the cytoskeleton. The cell cytoplasm is not a sac of fluid, as once thought. Essentially all eukaryotic cells contain three types of filamentous struc-mres actin filaments (7-9.5 nm in diameter also known as microfilaments), microtubules (25 nm), and intermediate filaments (10-12 nm). Each type of filament can be distinguished biochemically and by the electron microscope. [Pg.576]

Intermediate Filaments Differ From Microfilaments Microtubules... [Pg.577]

An intracellular fibrous system exists of filaments with an axial periodicity of 21 nm and a diameter of 8-10 nm that is intermediate between that of microfilaments (6 nm) and microtubules (23 nm). Four classes of intermediate filaments are found, as indicated in Table 49-13. They are all elongated, fibrous molecules, with a central rod domain, an amino terminal head, and a carboxyl terminal tail. They form a structure like a rope, and the mature filaments are composed of tetramers packed together in a helical manner. They are important structural components of cells, and most are relatively stable components of the cytoskeleton, not undergoing rapid assembly and disassembly and not... [Pg.577]

Figure 4.11 Dephosphorylated synapsin, associated with SSVs, is thought to form a heteromeric complex with CAM kinase II (also partially embedded in the vesicular membrane) and actin filaments. An increase in intracellular Ca + triggers phosphorylation of S3mapsin I which dissociates from the vesicular membrane. This frees the vesicles from the fibrin microfilaments and makes them available for transmitter release at the active zone of the nerve terminal... Figure 4.11 Dephosphorylated synapsin, associated with SSVs, is thought to form a heteromeric complex with CAM kinase II (also partially embedded in the vesicular membrane) and actin filaments. An increase in intracellular Ca + triggers phosphorylation of S3mapsin I which dissociates from the vesicular membrane. This frees the vesicles from the fibrin microfilaments and makes them available for transmitter release at the active zone of the nerve terminal...
The cellular cytoskeleton, primarily composed of microfilaments, microtubules, and intermediate filaments, provides structural support and enables cell motility. The cytoskeleton is composed of biological polymers and is not static. Rather, it is capable of dynamic reassembly in less than a minute [136], The cytoskeleton is built from three key components, the actin filaments, the intermediate filaments, and the microtubules. The filaments are primarily responsible for maintaining cell shape, whereas the microtubules can be seen as the load-bearing elements that prevent a cell from collapsing [136], The cytoskeleton protects cellular structures and connects mechanotransductive pathways. Along with mechanical support, the cytoskeleton plays a critical role in many biological processes. [Pg.297]

Two of the cytoskeletal components, the actin filaments and the microtubules have been studied with molecular rotors. The main component of the actin filaments is the actin protein, a 44 kD molecule found in two forms within the cell the monomeric globulin form (G-actin) and the filament form (F-actin). Actin binds with ATP to form the microfilaments that are responsible for cell shape and motility. The rate of polymerization from the monomeric form plays a vital role in cell movement and signaling. Actin filaments form the cortical mesh that is the basis of the cytoskeleton. The cytoskeleton has an active relationship with the plasma membrane. Functional proteins found in both structures... [Pg.297]

The observed range of the shear modulus varies between 1.5 GPa in filaments of regular count to 3 GPa in microfilaments, which correlates with the degree of orientation and crystalline perfection in the fibres [40]. Compared to the theoretical value of the modulus of shear between two hydrogen-bonded chains of 4.1 GPa, it indicates softening due to the van der Waals bonding between the hydrogen-bonded planes. [Pg.44]

The importance of the uniformity of structure and morphology for the strength of the fibre is illustrated in Fig. 73. It shows that the observed filament strength of the PpPTA microfilaments is considerably higher than the strength... [Pg.104]

The cytoskeleton is the collective name for all structural filaments in the cell. The cytoskeletal filaments are involved in establishing cell shape, and providing mechanical strength, locomotion, intracellular transport of organelles and chromosome separation in mitosis and meiosis. The cytoskeleton is made up of three kinds of protein filaments actin filaments (also called microfilaments), intermediate filaments and microtubules. [Pg.91]

Actin filaments are the thinnest of the cytoskeletal filaments, and therefore also called microfilaments. Polymerized actin monomers form long, thin fibers of about 8 nm in diameter. Along with the above-mentioned function of the cytoskeleton, actin interacts with myosin ( thick ) filaments in skeletal muscle fibers to provide the force of muscular contraction. Actin/Myosin interactions also help produce cytoplasmic streaming in most cells. [Pg.91]

In the resting neutrophil, about 50% of the actin is present in filaments within the cytoskeleton (and hence insoluble in detergents such as Triton X-100), whereas the remainder is detergent soluble and hence is not associated with the cytoskeleton. Data from studies of actin polymerisation in vitro predict that almost all of the actin within the cell should be F-actin (i.e. present in microfilaments). Upon stimulation of neutrophils with agonists such as fMet-Leu-Phe or PMA, actin polymerisation is activated extremely rapidly. There are two important questions Firstly, how is actin maintained in the unpolymerised state in resting cells Secondly, how is it rapidly assembled into the cytoskeleton during activation The answers to these questions lie in understanding the functions of the numerous proteins involved in the assembly and disassembly of actin filaments (Table 4.1). [Pg.133]

Although intermediate filaments are not universally associated with the cytoskeleton, neutrophils possess intermediate filaments of the vimentin type. Vimentin is a rod-shaped molecule of relative molecular mass 57 kDa that readily polymerises under physiological conditions to produce stable filaments 10-12 nm in diameter. Intermediate filaments are more robust than microfilaments and microtubules, and in neutrophils they form an open network of single filaments in the perinuclear space. [Pg.140]


See other pages where Filaments microfilaments is mentioned: [Pg.414]    [Pg.493]    [Pg.273]    [Pg.414]    [Pg.465]    [Pg.414]    [Pg.493]    [Pg.273]    [Pg.414]    [Pg.465]    [Pg.27]    [Pg.535]    [Pg.536]    [Pg.414]    [Pg.21]    [Pg.24]    [Pg.86]    [Pg.87]    [Pg.89]    [Pg.92]    [Pg.100]    [Pg.101]    [Pg.540]    [Pg.95]    [Pg.256]    [Pg.135]    [Pg.8]    [Pg.16]    [Pg.125]    [Pg.77]    [Pg.128]    [Pg.196]   
See also in sourсe #XX -- [ Pg.204 , Pg.206 , Pg.207 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Microfilament

Microfilaments

© 2024 chempedia.info