Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fiber, dietary calcium bioavailability

Our studies do not resolve the question of phytate vs fiber for the effect of wheat bran on dietary calcium bioavailability. Phytate level clearly affected apparent absorption of calcium in HS-II in the presence of an amount of the water insoluble fraction of dephytinized bran equivalent to 12 g of untreated bran and the phytate supplied as sodium phytate. An additional trial using untreated bran and the same amount of fiber as the water insoluble fraction with sodium phytate could resolve the question of fiber vs phytate. In HS-I, the balances were positive when a relatively large amount of bran, 36 g/day, was consumed. Calcium intakes were possibly higher than most men consume, but under the dietary conditions imposed for 15 days, the phytate and fiber of 36 g of bran did not express an adverse effect on calcium balance. [Pg.73]

In the studies on humans there appeared to be decreased calcium balances when 200 g or more of spinach per day was included in the diet. In two of the studies in which women were fed spinach, calcium intakes were below the Recommended Dietary Allowance of 800 mg/day (37). Some studies were conducted for short period of a week or less, which may not be sufficient time to adjust to a change in diet. From measurement of calcium excretion in urine after a test meal, it was shown that the calcium in oxalate-containing vegetables was less well-absorbed than that of milk or of vegetables not containing oxalic acid. However, this would not necessarily affect calcium balance, since the total amount of calcium in the diet would have to be considered. The effect of a combination of oxalic acid and fiber on calcium bioavailability should be further investigated. [Pg.116]

The mechanisms by which various forms of dietary fiber influence calcium bioavailability apparently also differ. In some cases, apparent dietary fiber effects on calcium bioavailability may be secondary to effects on bile acid and salt secretion and reabsorption or to other dietary components. [Pg.184]

Many other dietary factors have been reported to affect calcium bioavailability. Phytate, fiber, cellulose, uronic acids, sodium alginate, oxalate, fat (only in the presence of steatorrhea), and alcohol have been reported to decrease calcium bioavailability (15). Lactose and medium chain triglyceride increase it (15). FTuoride also affects calcium retention primarily by stimulating bone formation thereby decreasing calcium excretion (33-38). The effects of fluoride on calcium utilization have been variable (34,38,39). [Pg.24]

Most of the forementioned studies which examined the influence of various dietary fiber on the bioavailability of calcium by human subjects have depended upon the comparative measurements of calcium content of diets and calcium contents of stools and urine. As reviewed by Allen (3), calcium balance studies have distinct limitations relative to accuracy and precision. However, their ease of application and cost, laboratory equipment requirements, and real (or perceived) safety in comparison to available radioactive or stable isotope methods continue to make their use popular. In calcium balance studies, calcium absorption is assumed to be the difference between calcium excretion in the feces and calcium intake. Usually this is expressed as a percent of the calcium intake. This method assumes that all fecal calcium loss is unabsorbed dietary calcium which is, of course, untrue since appreciable amounts of calcium from the body are lost via the intestinal route through the biliary tract. Hence, calcium absorption by this method may underestimate absorption of dietary calcium but is useful for comparative purposes. It has been estimated that bile salts may contribute about 100 g calcium/day to the intestinal calcium contents. Bile salt calcium has been found to be more efficiently absorbed through the intestinal mucosa than is dietary calcium (20) but less so by other investigators (21). [Pg.175]

Wheat bran has been the fiber source most commonly used to study effects of dietary fiber on calcium absorption in controlled laboratory studies. However, wheat bran and other forms of fiber as they occur in food products present several disadvantages in terms of definition and by concurrently altering intakes of other substances or materials known or suspected of having an adverse effect on the bioavailability of calcium such as phytates and oxalates (5,13,17,22-28). Several studies have been conducted which have sought to separate or compare the effects of phytate and fiber... [Pg.175]

More than 40 years ago, calcium absorption from brown (whole wheat) bread which was fed to human subjects was found to be poorer than was that when white (extracted wheat flour) was fed 04,5). Since then, many studies have sought to define the extent of inhibition of calcium intestinal bioavailability by various forms of dietary fiber with mixed results and conclusions (6-18). [Pg.175]

Several other properties of selected dietary fibers may influence the bioavailability of calcium directly or indirectly. Those fibers which have cation exchange capabilities such as acid polysaccharides due to free carboxyl groups on the sugar residues may bind minerals such as calcium (3,17,33,36). Loss of calcium binding protein as a result of mucosa injury caused by the feeding of some kinds of dietary fiber was credited as being the partial cause of decreased calcium absorption in everted, rat gut sac studies by Oku et al. (16). [Pg.179]

The bioavailability of calcium from dairy foods is considered to be excellent (Schaafsma 1983). Evidence from animal studies suggests that the form of calcium in dairy foods may influence the bioavailability of this mineral (Wong and LaCroix 1980). For example, dairy foods that contain colloidal calcium phosphate or calcium caseinate (e.g., as in Cheddar cheese) appear to be somewhat better sources of calcium than foods that contain ionic calcium (e.g., yogurt, buttermilk). However, calcium in milk and other milk products is of greater bioavailability to humans than calcium found in other food sources. According to Renner (1983), calcium utilization from skim milk powder is 85% compared with 22-74% from vegetables. Dietary fiber in plant cell... [Pg.372]

Despite the fact that a plethora of dietary factors could, and will, affect the absorption characteristics of phytochemicals, this area has not been systematically explored. One reason might be the complexity of dietary factors and their interactions that could affect absorption. A nonexhaustive list would include the volume and composition of the food consumed, pH, caloric density, viscosity, nutrients (carbohydrates, protein, fat, fibers), alcohol, caffeine, and the presence of other phytochemicals. Such dietary factors affect the functional status, motility, and acidity of the gastrointestinal tract in a complex manner and modify the physicochemical properties, formulation, and dissolution characteristics of the compound of interest. Calcium in dairy products, for example, has the potential to chelate tetracyclines and fluoroquinolones and, thereby, reduce their bioavailability and biological activity [31]. [Pg.32]

Several dietary constituents decrease the bioavailability of calcium in food. Increasing fiber intake by, for example, replacing white flour by whole wheat flour in a typical Western diet has long been associated with negative calcium balance even when calcium intakes meet recommended levels. Likewise, the fiber in fruits and vegetables can cause negative calcium balance. In cereals, phytic acid is the main constituent of fiber that binds calcium, making it unavailable for absorption. The... [Pg.76]


See other pages where Fiber, dietary calcium bioavailability is mentioned: [Pg.65]    [Pg.174]    [Pg.175]    [Pg.174]    [Pg.174]    [Pg.37]    [Pg.116]    [Pg.1866]    [Pg.1383]    [Pg.200]    [Pg.242]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Calcium bioavailability

Dietary fiber

© 2024 chempedia.info