Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferroelectric materials barium titanate

This kind of microstructure also influences other kinds of conductors, especially those with positive (PTC) or negative (NTC) temperature coefficients of resistivity. For instance, PTC materials (Kulwicki 1981) have to be impurity-doped polycrystalline ferroelectrics, usually barium titanate (single crystals do not work) and depend on a ferroelectric-to-paraelectric transition in the dopant-rich grain boundaries, which lead to enormous increases in resistivity. Such a ceramic can be used to prevent temperature excursions (surges) in electronic devices. [Pg.273]

Oxygen Octahedra. An important group of ferroelectrics is that known as the perovskites. The perfect perovskite stmcture is a simple cubic one as shown in Figure 2, having the general formula ABO, where A is a monovalent or divalent metal such as Na, K, Rb, Ca, Sr, Ba, or Pb, and B is a tetra- or pentavalent cation such as Ti, Sn, Zr, Nb, Ta, or W. The first perovskite ferroelectric to be discovered was barium titanate [12047-27-7] and it is the most thoroughly investigated ferroelectric material (10). [Pg.203]

Barium titanate [12047-27-7] has five crystaUine modifications. Of these, the tetragonal form is the most important. The stmcture is based on corner-linked oxygen octahedra, within which are located the Ti" " ions. These can be moved from their central positions either spontaneously or in an apphed electric field. Each TiO octahedron may then be regarded as an electric dipole. If dipoles within a local region, ie, a domain, are oriented parallel to one another and the orientation of all the dipoles within a domain can be changed by the appHcation of an electric field, the material is said to be ferroelectric. At ca 130°C, the Curie temperature, the barium titanate stmcture changes to cubic. The dipoles now behave independentiy, and the material is paraelectric (see Ferroelectrics). [Pg.128]

Barium carbonate also reacts with titania to form barium titanate [12047-27-7] BaTiO, a ferroelectric material with a very high dielectric constant (see Ferroelectrics). Barium titanate is best manufactured as a single-phase composition by a soHd-state sintering technique. The asymmetrical perovskite stmcture of the titanate develops a potential difference when compressed in specific crystallographic directions, and vice versa. This material is most widely used for its strong piezoelectric characteristics in transducers for ultrasonic technical appHcations such as the emulsification of Hquids, mixing of powders and paints, and homogenization of milk, or in sonar devices (see Piezoelectrics Ultrasonics). [Pg.480]

Historically, materials based on doped barium titanate were used to achieve dielectric constants as high as 2,000 to 10,000. The high dielectric constants result from ionic polarization and the stress enhancement of k associated with the fine-grain size of the material. The specific dielectric properties are obtained through compositional modifications, ie, the inclusion of various additives at different doping levels. For example, additions of strontium titanate to barium titanate shift the Curie point, the temperature at which the ferroelectric to paraelectric phase transition occurs and the maximum dielectric constant is typically observed, to lower temperature as shown in Figure 1 (2). [Pg.342]

Barium titanate, BaTiOs, is a ferroelectric material (see Chapter 9) widely used in capacitors because of its high dielectric constant. It was initially prepared by heating barium carbonate and titanium dioxide at high temperature. [Pg.154]

Barium titanate is one example of a ferroelectric material. Other oxides with the perovskite structure are also ferroelectric (e.g., lead titanate and lithium niobate). One important set of such compounds, used in many transducer applications, is the mixed oxides PZT (PbZri-Ji/Ds). These, like barium titanate, have small ions in Oe cages which are easily displaced. Other ferroelectric solids include hydrogen-bonded solids, such as KH2PO4 and Rochelle salt (NaKC4H406.4H20), salts with anions which possess dipole moments, such as NaNOz, and copolymers of poly vinylidene fluoride. It has even been proposed that ferroelectric mechanisms are involved in some biological processes such as brain memory and voltagedependent ion channels concerned with impulse conduction in nerve and muscle cells. [Pg.392]

A wide array of ferroelectric, piezoelectric and pyroelectric materials have titanium, zirconium and zinc metal cations as part of their elemental composition Many electrical materials based on titanium oxide (titanates) and zirconium oxide (zirconates) are known to have structures based on perovskite-type oxide lattices Barium titanate, BaTiOs and a diverse compositional range of PZT materials (lead zirconate titanates, Pb Zr Tij-yOs) and PLZT materials (lead lanthanum zirconate titanates, PbxLai-xZryTii-yOs) are among these perovskite-type electrical materials. [Pg.155]

A ferroelectric model material is barium titanate BaTi03. On cooling from high temperatures, the permittivity increases up to values well above 10,000 at the phase transition temperature Tc. The inverse susceptibility as well as the dielectric permittivity follows a Curie-Weiss law x1 f 1 oc (T — O). The appearance of the spontaneous polarization is accompanied with a spontaneous (tetragonal) lattice distortion. [Pg.17]

The optical properties of ferroelectric materials are characterized by birefringence. Barium titanate is isotropic only in the cubic phase. The tetragonal and the rhombohedral phases are... [Pg.17]

The compositions of most dielectric materials used for ceramic capacitors are based on ferroelectric barium titanate. As discussed in detail in Pragraph 1.3 the permittivity of ferroelectric perovskites shows marked changes with temperature, particularly close to the phase transition. From the device point of view a high dielectric permittivity with stable properties over a wide temperature range is required. There are various specifications which have to be fulfilled (e.g. X7R AC/C(T = 25°C) < 0.15 in a range between -55°C and 125°C). [Pg.27]

Ferroelectric behaviour is limited to certain materials and to particular temperature ranges for a given material. As shown for barium titanate in Section 2.7.3, Fig. 2.40(c), they have a Curie point Tc, i.e. a temperature at which the spontaneous polarization falls to zero and above which the properties change to those of a paraelectric (i.e. a normal dielectric). A few ferroelectrics, notably Rochelle Salt (sodium potassium tartrate tetrahydrate (NaKC406.4H20)) which was the material in which ferroelectric behaviour was first recognized by J. Yalasek in 1920, also have lower transitions below which ferroelectric properties disappear. [Pg.59]

Barium titanate, the first ceramic material in which ferroelectric behaviour was observed, is the ideal model for a discussion of the phenomenon from the point of view of crystal structure and microstructure see also [10] and [11]. [Pg.71]

Basantakumar Sharma and Sarma H. N. K., A Mansingh, Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin film. J. Materials Science. 34(1999) pp. 1385-1388. [Pg.90]

Barium titanate (BaTiOj), a perovskite-type electro-ceramic material, has been extensively studied and utilized due to its dielectric and ferroelectric properties. The wide applications of barium titanates include multiplayer capacitors in electronic circuits, nonlinear resistors, thermal switches, passive memory storage devices, and transducers. In addition, barium titanate can be used for chemical sensors due to its surface sensivity to gas adsorption. [Pg.211]

An extensive series of phases of general formula Ba Ti5,0 +2y are formed from the reaction of Ti02 with barium oxide. The simplest, BaTiOs, is known as barium titanate. These materials are of interest because of their ferroelectric properties, which result from the differences in the relative sizes of the Ba andTi ions. The Ti ions are located between six Ba ions, which occupy octahedral positions. However, the Ti ions are small compared to the Ba and so are free to move within their octahedral Ba holes . [Pg.4903]

The inverse-micelle approach may also offer a generalized scheme for the preparation of monodisperse metal-oxide nanoparticles. The reported materials are ferroelectric oxides and, thus, stray from our emphasis on optically active semiconductor NQDs. Nevertheless, the method demonstrates an intriguing and useful approach the combination of sol-gel techniques with inverse-micelle nanoparticle synthesis (with OTO erafe-temperature nucleation and growth). Monodisperse barium titanate, BaTiOs, nanocrystals, with diameters controlled in the range from 6-12nm, were prepared. In addition, proof-of-principle preparations were successfully conducted for Ti02 and PbTiOs. Single-source alkoxide precmsors are used to ensure proper stoichiometry in the preparation of complex oxides (e.g. bimetallic oxides) and are commercially available for a variety of systems. The... [Pg.5580]

Lattice dynamics in bulk perovskite oxide ferroelectrics has been investigated for several decades using neutron scattering [71-77], far infrared spectroscopy [78-83], and Raman scattering. Raman spectroscopy is one of the most powerful analytical techniques for studying the lattice vibrations and other elementary excitations in solids providing important information about the stmcture, composition, strain, defects, and phase transitions. This technique was successfully applied to many ferroelectric materials, such as bulk perovskite oxides barium titanate (BaTiOs), strontium titanate (SrTiOs), lead titanate (PbTiOs) [84-88], and others. [Pg.590]

In contrast, the nonlinearities in bulk materials are due to the response of electrons not associated with individual sites, as it occurs in metals or semiconductors. In these materials, the nonlinear response is caused by effects of band structure or other mechanisms that are determined by the electronic response of the bulk medium. The first nonlinear materials that were applied successfully in the fabrication of passive and active photonic devices were in fact ferroelectric inorganic crystals, such as the potassium dihydrogen phosphate (KDP) crystal or the lithium niobate (LiNbO,) [20-22]. In the present, potassium dihydrogen phosphate crystal is broadly used as a laser frequency doubler, while the lithium niobate is the main material for optical electrooptic modulators that operate in the near-infrared spectral range. Another ferroelectric inorganic crystal, barium titanate (BaTiOj), is currently used in phase-conjugation applications [23]. [Pg.421]

Although correlation between parameters is a function of the data structure and has nothing to do with deficiencies in the model, it has implications for both the choice of the model and the design of the experiment. EVANS described his experiences with the determination of the crystal structure of tetragonal barium titanate (BaTiOa). The problem was ample in that it involved only three atomic positional parameters (one for Ti and two for 0), plus nine thermal parameters. There was considerable interest in the details of the structure because of the ferroelectric properties of the material. The proposed model was essentially a simple cubic arrangement of atoms, but with Ti displaced slightly from the center of an octahedron. By ordinary x-ray standards, this distortion (which was expected to be on the order of 0.15 A) could be measured with a standard error of 0.01-0.02 A if... [Pg.62]

One example of a dielectric material in which ionic motion is important is barium titanate BaTiOj, which is ferroelectric (i.e., the induced polarization does not decay npon the removal of the electric field), hi these structures, titanium ion displacement within its octahedral sites canses extremely large polarizations (2,000-3,000) [14]. In nonferroelectric materials snch as titanium dioxide, ions will return to equilibrium position npon removal of field. Electronic polarizabihty is greater for materials containing more electrons (i.e., heavy atoms, greater polarizability). The frequency range for electronic motion is np to 10 Hz. In the case of materials for organic... [Pg.232]

Barium titanate is of particular interest, since it shows remarkable ferroelectric behavior. The reason for this is understood in terms of the structure. Here the ion, Ba2+, is so large relative to the small ion, Ti4+, that the latter can literally rattle around in its octahedral hole. When an electric field is applied to a crystal of this material, it can be highly polarized because each of the Ti4+ ions is drawn over to one side of its octahedron thus causing an enormous electrical polarization of the crystal as a whole. [Pg.811]


See other pages where Ferroelectric materials barium titanate is mentioned: [Pg.182]    [Pg.182]    [Pg.27]    [Pg.29]    [Pg.607]    [Pg.128]    [Pg.360]    [Pg.274]    [Pg.114]    [Pg.271]    [Pg.217]    [Pg.572]    [Pg.365]    [Pg.391]    [Pg.936]    [Pg.247]    [Pg.128]    [Pg.188]    [Pg.190]    [Pg.698]    [Pg.663]    [Pg.725]    [Pg.558]    [Pg.422]    [Pg.480]    [Pg.482]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Barium titanate

Ferroelectric materials

Ferroelectric titanates

Ferroelectrics materials

Titan

Titanate

Titanates

Titanates barium

Titanation

Titane

© 2024 chempedia.info