Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acids growth activity

Systemic antibiotics are indicated for moderate-severe inflammatory acne not responding to topical treatments. Systemic antibiotics act on 1) suppression of P. acnes growth 2) inhibition of bacterial lipases 3) reduction of free fatty acids and 4) reduction of inflammation. Oxytetracycline and its derivatives are the most commonly used oral antibiotics. Second-generation tetracyclines such as minocycline, doxy-cycline and lymecycline present longer half-lives, enhanced bacterial activity and lower... [Pg.127]

Otfier fiormones accelerate tfie release of free fatty acids from adipose tissue and raise tfie plasma free fatty acid concentration by increasing the rate of lipolysis of the triacylglycerol stores (Figure 25—8). These include epinephrine, norepinephrine, glucagon, adrenocorticotropic hormone (ACTH), a- and P-melanocyte-stimulat-ing hormones (MSH), thyroid-stimulating hormone (TSH), growth hormone (GH), and vasopressin. Many of these activate the hormone-sensitive hpase. For an optimal effect, most of these lipolytic processes require the presence of glucocorticoids and thyroid hormones. These hormones act in a facilitatory or permissive capacity with respect to other lipolytic endocrine factors. [Pg.215]

Besides watet, the diet must provide metaboEc fuels (carbohydrate and fat) fot bodily growth and activity protein fot synthesis of tissue proteins fiber for roughage minerals for specific metabolic functions cettain polyunsamtated fatty acids of the n-3 and n-6 famihes fot eicosanoid synthesis and other functions and vitamins, otganic compounds needed in small amounts for many varied essential functions. [Pg.480]

Fe-TPAA Fe(III)-tris[N-(2-pyridylmethyl)-2-aminoethyl] amine Fe-TPEN Fe(II)-tetrakis-N,N,N, N -(2-pyridyl methyl-2-aminoethyl)amine FFA Free fatty acids FGF Fibroblast growth factor FID Flame ionization detector FITC Fluorescein isothiocyanate FKBP FK506-binding protein FLAP 5-lipoxygenase-activating protein... [Pg.282]

Fatty Acids and Lipids Although several fatty acids, esters and alcohols are known to be toxic to plant growth, their role in allelopathy is not fully investigated (3). Dihydroxystearic acid (3, 49) is the classic example known to exhibit allelopathic activity. [Pg.37]

Residues of fatty acids from emulsion polymerisation and from cure activation provide sites for bacterial attack when the rubber product is exposed to warm moist conditions. The addition of a biocide/fimgicide will give excellent fungal growth protection. [Pg.136]

Since anaerobic azo dye reduction is an oxidation-reduction reaction, a liable electron donor is essential to achieve effective color removal rates. It is known that most of the bond reductions occurred during active bacterial growth [48], Therefore, anaerobic azo dye reduction is extremely depended on the type of primary electron donor. It was reported that ethanol, glucose, H2/CO2, and formate are effective electron donors contrarily, acetate and other volatile fatty acids are normally known as poor electron donors [42, 49, 50]. So far, because of the substrate itself or the microorganisms involved, with some primary substrates better color removal rates have been obtained, but with others no effective decolorization have been observed [31]. Electron donor concentration is also important to achieve... [Pg.66]

Biotin is a growth factor for many bacteria, protozoa, plants, and probably all higher animals. In the absence of biotin, oxalacetate decarboxylation, oxalosuccinate carboxylation, a-ketoglutarate decarboxylation, malate decarboxylation, acetoacetate synthesis, citrulline synthesis, and purine and pyrimidine syntheses, are greatly depressed or absent in cells (Mil, Tl). All of these reactions require either the removal or fixation of carbon dioxide. Together with coenzyme A, biotin participates in carboxylations such as those in fatty acid and sterol syntheses. Active C02 is thought to be a carbonic acid derivative of biotin involved in these carboxylations (L10, W10). Biotin has also been involved in... [Pg.209]

Protein biotinylation is catalyzed by biotin protein ligase (BPL). In the active site of the enzyme, biotin is activated at the expense of ATP to form AMP-biotin the activated biotin can then react with a nucleophile on the targeted protein. BPL transfers the biotin to a special lysine on biotin carboxyl carrier protein (BCCP), a subunit of AcCoA carboxylase (Scheme 21). Biotinylation of BCCP is very important in fatty acid biosynthesis, starting the growth of the fatty acid with AcCoA carboxylase to generate malonyl-CoA. Recently the crystal structures of mutated BPL and BCCP have been solved together with biotin and ATP to get a better idea of how the transfer fiinctions. ... [Pg.455]


See other pages where Fatty acids growth activity is mentioned: [Pg.270]    [Pg.78]    [Pg.131]    [Pg.333]    [Pg.184]    [Pg.243]    [Pg.408]    [Pg.450]    [Pg.51]    [Pg.449]    [Pg.44]    [Pg.221]    [Pg.37]    [Pg.42]    [Pg.304]    [Pg.60]    [Pg.966]    [Pg.24]    [Pg.161]    [Pg.321]    [Pg.404]    [Pg.68]    [Pg.551]    [Pg.318]    [Pg.218]    [Pg.310]    [Pg.147]    [Pg.245]    [Pg.251]    [Pg.192]    [Pg.106]    [Pg.74]    [Pg.143]    [Pg.387]    [Pg.189]    [Pg.119]    [Pg.37]    [Pg.247]    [Pg.136]    [Pg.267]    [Pg.305]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Active growth

Fatty acids activation

© 2024 chempedia.info