Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Factor chemical nature

It is important to appreciate the assumption implicit in the concept of roughness factor chemical nature and local environment of surface molecules on the rough surface and on smooth surface are the same. [Pg.325]

In this manner, the KuQp of a petroieum cut can be calcuiated quickly from readily avkilable data, i. e., the specific gravity and the distillation curve. The A //np value is between 10 and 13 and defines the chemical nature of the cut as it will for the pure components. The characterization factor is extremely Va luable and widely used in refining although the discriminatory character of the Kuqp is less than that obtained by more modern physical methods described in 3.2 and 3.3. [Pg.42]

Table 4.19 gives the Henry constants for a few common gaseous components. The chemical nature is also a dominant factor. The effect of temperature is moderate note that the solubility passes through a minimum that depends on the hydrocarbon in question and that it is around 100°C. [Pg.170]

Typical results for a semiconducting liquid are illustrated in figure Al.3.29 where the experunental pair correlation and structure factors for silicon are presented. The radial distribution function shows a sharp first peak followed by oscillations. The structure in the radial distribution fiinction reflects some local ordering. The nature and degree of this order depends on the chemical nature of the liquid state. For example, semiconductor liquids are especially interesting in this sense as they are believed to retain covalent bonding characteristics even in the melt. [Pg.132]

The use of flame retardants came about because of concern over the flammabiUty of synthetic polymers (plastics). A simple method of assessing the potential contribution of polymers to a fire is to examine the heats of combustion, which for common polymers vary by only about a factor of two (1). Heats of combustion correlate with the chemical nature of a polymer whether the polymer is synthetic or natural. Concern over flammabiUty should arise via a proper risk assessment which takes into account not only the flammabiUty of the material, but also the environment in which it is used. [Pg.465]

Furchgott and Zawadzki [1] first discovered that endothelial cells release a substance(s) responsible for the relaxation of vascular smooth muscle by acetylcholine this substance was named endothelium-derived relaxing factor (EDRF). This epoch-making discovery answers the question raised for nearly one hundred years by pharmacologists about why vascular smooth muscle is relaxed by acetylcholine, which however elicits contraction of the other smooth muscles. Because of its instability, the true chemical nature of EDRF was not easily identified. Several years later, several research groups independently found that the biological activities and biochemical properties of EDRF were identical... [Pg.855]

The persistence of the N-nitrosamine that may be formed in soil will depend on a host of conditions, such as soil type, organic matter content, clay content, pH, the microflora present in the soil, moisture content and temperature, etc. Superimposed on all these factors will be the chemical nature of the pesticide. The N-nitrosoatrazine ( ) formed in soil from the herbicide atrazine ( ) was shown to be rapidly disappeared (1). Thus, in soil W-nitrosoatrazine was observed after one week, but was absent 4 and 10 weeks later (Table IV). In contrast, N-nitroso-butralin (11 ) persisted much longer than N-nitrosoatrazine (9) under the same conditions (Table V) and was still detectable after 6 months (3). Our studies demonstrated that N-nitrosoglyphosate is persistent in the soil. Fox soil treated with 20 ppm of nitrite nitrogen and 740 ppm glyphosate contained about 7 ppm of N-nitrosoglyphosate even after 140 days (6). [Pg.283]

Electrochemical reactions at semiconductor electrodes have a number of special features relative to reactions at metal electrodes these arise from the electronic structure found in the bulk and at the surface of semiconductors. The electronic structure of metals is mainly a function only of their chemical nature. That of semiconductors is also a function of other factors acceptor- or donor-type impurities present in bulk, the character of surface states (which in turn is determined largely by surface pretreatment), the action of light, and so on. Therefore, the electronic structure of semiconductors having a particular chemical composition can vary widely. This is part of the explanation for the appreciable scatter of experimental data obtained by different workers. For reproducible results one must clearly define all factors that may influence the state of the semiconductor. [Pg.250]

A third reason is due to the influence of external factors, which often play a more important role than the factors that characterise the chemical nature of the reaction. All reactions can be regarded as dangerous (or not dangerous) at this stage. This means that most of the time it is the ambient conditions that make chemical reactions uncontrollable. [Pg.143]

Consequently, the composition of chlorite in the discharge zone depends largely on the chemical nature of fluids (factors such as Fe "/Mg, SO /H2S, pH, aj 2+) and temperature. Movement of fluids may also be an important cause for the variability in the ratio of Fe " to Mg in hydrothermal chlorite. Wide compositional variations in chlorite from the hydrothermal ore deposits in Japan, including Kuroko and Neogene Cu-Pb-Zn vein-type deposits, are considered to reflect the variable chemical nature of ascending ore fluids and fluids that mix with ascending ore fluids at discharge zone. [Pg.118]

Effectiveness of Chemical Dispersants Under Real Conditions. It is believed that the effectiveness of dispersants is influenced by a number of factors, including the chemical natures of the dispersant and the nature of the oil, their relative amounts, and the microscopic mixing processes occurring as the dispersant lands on the oil and penetrates it while subject to turbulence originating in the air and water [1143]. In addition, the oil to be treated can also partly evaporate, form mousses, and spread into thick and sheen patches. [Pg.303]

From the coverage made thus far, it may be of interest to record in one place the different factors which influence the rate of chemical reactions. The rate of chemical reaction depends essentially on four factors. The nature of reactants and products is one. For example, certain physical properties of the reactants and products govern the rate. As a specific example in this context mention may be of oxidation of metals. The volume ratio of metallic oxide to metal may indicate that a given oxidation reaction will be fast when the oxide is porous, or slow when the oxide is nonporous, thus presenting a diffusion barrier to the metal or to oxygen. The other two factors are concentration and temperature effects, which are detailed in Sections. The fourth factor is the presence of catalysts. [Pg.305]

For some polymers, like polystyrene or poly(methyl methacrylate), narrow standards of known molar mass and small polydispersity are commercially available, which can be used for calibration. Unfortunately, such standards are not available for all polymers and then the obtained true molar masses of a specific polymer might differ by a factor of two from the value obtained by calibration with, e.g., polystyrene [30] (see Section 9.1). This problem can be resolved by the so-called universal calibration, which is based on the finding that the retention volume of a polymer is a single-valued function of the hydrodynamic volume of the polymer, irrespective of its chemical nature and... [Pg.229]

The intensity factor - the specific activity of the filler at its interface with the rubber. This is dependant upon the filler s physical structure and the chemical nature of its surface. Different rubbers will behave differently to the same filler. [Pg.142]

The retention of the band or peak beyond what V0 predicts depends on the magnitude of the equilibrium constant and logically on the volume Vs or area As of the stationary phase. The equation of importance is Vr — V0+KVS and the net retention V/ = KVS. Two main factors influence the value of the equilibrium constant and these are the chemical nature of the mobile and stationary phases. Chemistry is molecules and while true thermodynamics knows no molecules or forces between molecules, chemists think in terms of molecular properties. Among those properties, there is a consideration of the kinds of forces that exist between molecules. Granted that thermodynamics are energy not force considerations but it is useful to understand the main forces involved in the interaction between molecules. Put another way,... [Pg.411]


See other pages where Factor chemical nature is mentioned: [Pg.485]    [Pg.100]    [Pg.226]    [Pg.174]    [Pg.535]    [Pg.298]    [Pg.410]    [Pg.145]    [Pg.31]    [Pg.634]    [Pg.205]    [Pg.317]    [Pg.129]    [Pg.343]    [Pg.502]    [Pg.231]    [Pg.548]    [Pg.331]    [Pg.204]    [Pg.699]    [Pg.55]    [Pg.62]    [Pg.363]    [Pg.60]    [Pg.304]    [Pg.275]    [Pg.204]    [Pg.205]    [Pg.57]    [Pg.496]    [Pg.920]    [Pg.211]    [Pg.58]    [Pg.247]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Chemical nature

Natural Factors

Natural chemicals

© 2024 chempedia.info