Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydrofuran, extraction

Reppe s work also resulted in the high pressure route which was estabUshed by BASF at Ludwigshafen in 1956. In this process, acetylene, carbon monoxide, water, and a nickel catalyst react at about 200°C and 13.9 MPa (2016 psi) to give acryUc acid. Safety problems caused by handling of acetylene are alleviated by the use of tetrahydrofuran as an inert solvent. In this process, the catalyst is a mixture of nickel bromide with a cupric bromide promotor. The hquid reactor effluent is degassed and extracted. The acryUc acid is obtained by distillation of the extract and subsequendy esterified to the desked acryhc ester. The BASF process gives acryhc acid, whereas the Rohm and Haas process provides the esters dkecdy. [Pg.155]

A number of techniques have been developed for the trace analysis of siUcones in environmental samples. In these analyses, care must be taken to avoid contamination of the samples because of the ubiquitous presence of siUcones, particularly in a laboratory environment. Depending on the method of detection, interference from inorganic siUcate can also be problematic, hence nonsiUca-based vessels are often used in these deterrninations. SiUcones have been extracted from environmental samples with solvents such as hexane, diethyl ether, methyl isobutylketone, ethyl acetate, and tetrahydrofuran (THF)... [Pg.59]

Cytochalasin B (from dehydrated mould matter) [14930-96-2] M 479.6. Purified by MeOH extraction, reverse phase Cl8 silica gel batch extraction, selective elution with 1 1 v/v hexane/tetrahydrofuran, crystn, subjected to TLC and recrystallised [Lipski et al. Aruil Biochem 161 332 1987]. [Pg.526]

While keeping the collected deuterioammonia at dry ice-isopropyl alcohol temperature, lithium wire (10 mg) is added, followed by a solution of 3/3-hydroxy-5a-cholest-7-en-6-one (161 50 mg) in anhydrous tetrahydrofuran (4 ml). The reaction mixture is stirred for 20 min, the cooling bath is then removed and the ammonia is allowed to boil under reflux for 40 min. A saturated solution of ammonium chloride in tetrahydrofuran is added dropwise until the deep blue color disappears and then the ammonia is allowed to evaporate. The residue is extracted with ether and the organic layer washed with dilute hydrochloric acid and sodium bicarbonate solution and then with water. Drying and evaporation of the solvent gives a semicrystalline residue which is dissolved in acetone and oxidized with 8 N chromic acid solution. After the usual workup the residue is dissolved in methanol containing sodium hydroxide (0.2 g) and heated under reflux for 1 hr to remove any deuterium introduced at C-5 or C-7. (For workup, see section II-B). [Pg.191]

A suspension of lithium aluminum deuteride (1.6 g) in dry tetrahydrofuran (60 ml) is added dropwise to a stirred and cooled (with ice-salt bath) solution of 5a-androst-l4-ene-3j3,17j3-diol (179, 1.6 g) and boron trifluoride-etherate (13.3 g) in dry tetrahydrofuran (60 ml). The addition is carried out in a dry nitrogen atmosphere, over a period of 30 min. After an additional 30 min of cooling the stirring is continued at room temperature for 2 hr. The cooling is resumed in a dry ice-acetone bath and the excess deuteriodiborane is destroyed by the cautious addition of propionic acid. The tetrahydrofuran is then evaporated and the residue is dissolved in propionic acid and heated under reflux in a nitrogen atmosphere for 8 hr. After cooling, water is added and the product extracted with ether. The ether... [Pg.194]

A suspension of 17a,21-dihydroxypregna-4,9(ll)-diene-3,20-dione 21-acetate (0.77 g) and iV-bromoacetamide (0.3 g) in anhydrous methylene dichloride (40 ml) is added over 2-3 min with stirring to a mixture of anhydrous hydrogen fluoride (10.19 g), and anhydrous tetrahydrofuran (18 g) in a polyethylene bottle at —80° (acetone-dry ice). After 1 hr at —80° the reaction mixture is kept for a further 1 hr at 0° and then added cautiously to an excess of an ice-cold solution of sodium carbonate. Extraction with methylene dichloride and crystallization from acetone-hexane furnish 9a-bromo-ll -fluoro-17a,21-dihydroxypregn-4-ene-3,20-dione 21-acetate (0.69 g), mp 205-208°, raised by several crystallizations from acetone-hexane to 215-217° [aju 142° (CHCI3) max 240-242 mju (e 15,500). [Pg.458]

A solution of the acylated thiocyanatohydrin in a minimal amount of 5% potassium hydroxide in diglyme (other solvents such as methanol, ethanol or tetrahydrofuran have also been used) is stirred for 2 days at room temperature. Water is added to the reaction mixture to precipitate the product which is filtered or extracted with ether (or chloroform). The ether extract is washed several times with water, dried (Na2S04), and concentrated under vacuum. The thiirane usually can be crystallized from an appropriate solvent pair. Chromatography over alumina has been used for the purification of episulfides. [Pg.45]

Acetylene is passed for 1 hr through a mixture consisting of 0.5 g (72 mg-atoms) of lithium in 100 ml of ethylene-diamine. A solution prepared from 1 g (3.5 mmoles) of rac-3-methoxy-18-methylestra-l,3,5(10)-trien-I7-one and 30 ml of tetrahydrofuran is then added at room temperature with stirring over a period of 30 min. After an additional 2 hr during which time acetylene is passed through the solution the mixture is neutralized with 5 g of ammonium chloride, diluted with 50 ml water, and extracted with ether. The ether extracts are washed successively with 10% sulfuric acid, saturated sodium hydrogen carbonate and water. The extract is dried over sodium sulfate and concentrated to yield a solid crystalline material, which on recrystallization from methanol affords 0.95 g (87%) of rac-3-methoxy-18-methyl-17a-ethynyl-estra-l,3,5(10)-trien-17jB-ol as colorless needles mp 161°. [Pg.73]

A solution of the monosodium salt of diacetylene in 300 ml of liquid ammonia is prepared from 13.8 g (0.6 g-atoms) sodium and 24.6 g (0.2 moles) l,4-dichlorobut-2-yne. To this mixture is added a suspension of 5 g (17.6 mmoles) 3-methoxyestra-l,3,5(10)-trien-17-one in anhydrous tetrahydrofuran at —40° and the reaction mixture is stirred and maintained at this temperature for 2 hr. Ammonium chloride is then added and the ammonia is allowed to evaporate overnight. The residual solids are extracted with methylene dichloride and the extracts washed with water, dried over magnesium sulfate, and evaporated at 70°. The resultant dark gum is... [Pg.74]

A total of 50 ml (0.15 moles) of a 3 ethereal solution of methylmagnesium bromide is added slowly to a vigorously stirred solution of 5.8 g (12.5 mmoles) or 3,3 20,20-bisethylenedioxy-5a,6a-epoxy-5a-pregnane-ll/l,17a,21-triol in 400 ml of tetrahydrofuran. The solution is heated under reflux for 24 hr, cooled and treated with 32 ml of saturated ammonium chloride solution. The supernatant is decanted and the residue is washed with several portions of tetrahydrofuran. The combined supernatants are evaporated and extracted with ethyl acetate, washed with saturated salt solution, dried and concentrated to give 4,55 g (75%) of 3,3 20,20-bisethylenedioxy-6 -methyl-5a-pregnane-5a,ll, 17a,21-tetrol mp 170-172° after crystallisation from acetone-petroleum ether. The analytical sample is crystallized from acetone-petroleum ether mp 175-177° [aJo —11° (CHCI3). [Pg.86]

A mixture of 4 g of diazoketone (94) and 2.2 g of sodium bicarbonate in 200 ml of tetrahydrofuran and 180 ml of water is irradiated with a Hanovia 200 W mercury vapor lamp (using a Corex filter) until the starting material has been consumed. After addition of 500 ml of water, followed by extraction of nonacidic products, the solution is acidified, cooled to 0° and filtered to yield 2.95 g (76%) of white crystals of crude acid (95) mp 170-176°. An analytical sample has mp 188°. ° ... [Pg.443]

A-Fluoro-2,4,6-tnmethylpyndmium inflate (1 mmol) is added m several portions at room temperature to a tetrahydrofuran solution of sodium diethyl phenyl-malonate, obtained from 1 mmol of diethyl phenyl malonate and sodium hydnde at 0 C in tetrahydrofuran The reaction imxture is poured mto dilute hydrochlonc acid and extracted with ether The ether extract is washed with sodium bicarbonate and water and dned over magnesium sulfate The oily residue obtamed after removal of tihe ether is chromatographed on sihca gel (dichloromethane-hexane, 1 1) to give diethyl fluorophenylmalonate in 83% yield... [Pg.166]

The first bioanalytical application of LC-GC was presented by Grob et al. (119). These authors proposed this coupled system for the determination of diethylstilbe-strol in urine as a replacement for GC-MS. After hydrolysis, clean-up by solid-phase extraction and derivatization by pentafluorobenzyl bromide, the extract was separated with normal-phase LC by using cyclohexane/1 % tetrahydrofuran (THE) at a flow-rate of 260 p.l/min as the mobile phase. The result of LC-UV analysis of a urine sample and GC with electron-capture detection (ECD) of the LC fraction are shown in Ligures 11.8(a) and (b), respectively. The practical detection limits varied between about 0.1 and 0.3 ppb, depending on the urine being analysed. By use of... [Pg.273]

To the cooled solution is added dropwise with stirring, a solution of 64 g (0.48 mole) of -amyl nitrate in 100 ml of dry tetrahydrofuran during a period of 1 hour. The solution is finally allowed to warm to room temperature overnight. Work-up is carried out by adding an excess of ice-acetic acid, diluting with water, and extracting the aqueous solution several times with ether. The ether extracts are washed thoroughly... [Pg.65]

A 1.5 to 2 M solution of methylsulfinyl carbanion in dimethyl sulfoxide is prepared under nitrogen as above from sodium hydride and dry dimethyl sulfoxide. An equal volume of dry tetrahydrofuran is added and the solution is cooled in an ice bath during the addition, with stirring, of the ester (0.5 equivalent for each 1 equivalent of carbanion neat if liquid, or dissolved in dry tetrahydrofuran if solid) over a period of several minutes. The ice bath is removed and stirring is continued for 30 minutes. The reaction mixture is then poured into three times its volume of water, acidified with aqueous hydrochloric acid to a pH of 3-4 (pH paper), and thoroughly extracted with chloroform. The combined extracts are washed three times with water, dried over anhydrous sodium sulfate, and evaporated to yield the jS-ketosulfoxide as a white or pale yellow crystalline solid. The crude product is triturated with cold ether or isopropyl ether and filtered to give the product in a good state of purity. [Pg.94]

Chloro-1 -methyl-6-phenyl4H-s-triazolo-[4,3-a] [1,4] -benzodiazepine A stirred suspension of 5-chloro-2-[3-(bromomethyl)-5-methyl4H-1,2,4-triazol4-yl] -benzophenone (391 mg, 0.001 mol) in tetrahydrofuran (15 ml) was cooled in an ice-bat hand treated with a saturated solution of ammonia in methanol (12.5 ml). The resulting solution was allowed to warm to ambient temperature and stand for 24 hours. It was then concentrated in vacuo. The residue was suspended in water, treated with a little sodium bicarbonate and extracted with methylene chloride. The extract was washed with brine, dried with anhydrous potassium carbonate and concentrated. The residue was crystallized from methylene chloride-ethyl acetate to give... [Pg.47]

Preparation of 4-aza-S-(N-methyl-4-piperidyll-10,11-dihydro-SH-dibenzo[a,d]cycloheptene-S-ol Add 17.4 g of N-methyl-4-chloropiperidine to a stirred mixture containing 3.2 g of magnesium, 20 ml of anhydrous tetrahydrofuran, 1 ml of ethyl bromide and a crystal of iodine. Reflux for two hours, cool to 30°-35°C and add a solution of 13 g of 4-aza-10,11 -dihydro-5H-dibenzo[a,d] cycloheptene-5-one in 25 ml of tetrahydrofuran. Stir for five hours, remove the solvent by distillation in vacuo and add 250 ml of ether. Add 100 ml of 10% ammonium chloride solution and extract the mixture with chloroform. Concentrate the chloroform solution to a residue and recrystallize from isopropyl ether obtaining 20 g of the carbinol,... [Pg.118]

Preparation of 9, 11 -Epoxy-17a-21 -Dihydroxy-16 -Methyl-4-Pregnene-3 0-Dione 21-Acetate To a stirred solution of 100 mg of the 9a-bromo-11(3,17a,2Ttrihydroxy-16 3-methyl-4-pregnene-3,20-dione 21-acetate in 3 ml of tetrahydrofuran and 1 ml of methanol under nitrogen was added 1.02 ml of 0.215 N methanolic sodium methoxide. After 10 minutes at 25°C, 0.2 ml of acetic acid was added and the methanol removed in vacuo. The residue was acetylated with 1.00 ml of pyridine and 0.5 ml of acetic anhydride at 60°C for 70 minutes. The mixture was taken to dryness in vacuo, water added, and the product extracted into chloroform. The residue was crystallized from ether-acetone to give pure 9(3,11 (3-epoxy-17a,21-dihydroxy-16(3-methyl-4-pregnene-3,20-dione 21-acetate. [Pg.166]

Preparation of 9a-Fluoro-110,17a,21-Trihydroxy-160-Methyl-4-Pregnene-3,2O-Dione 21-Acetate To a solution of 200 mg of 9(3,11(3-epoxy-1 7a,21-dihydroxy-16(3-methyl-4-pregnene 3,20-dione 21-acetate in 2 ml of chloroform and 2 ml of tetrahydrofuran in a polyethylene bottle at -60°C was added 2 ml of a 2 1 (by weight) mixture of anhydrous hydrogen fluoride and tetrahydrofuran. After 4 hours at -10°C the mixture was cooled to -60°C and cautiously added to a stirred mixture of 30 ml or 25% aqueous potassium carbonate and 25 ml of chloroform kept at -5°C. The aqueous phase was further extracted with chloroform and the latter phase washed with water and dried over magnesium sulfate. The residue on crystallization from acetone-ether gave pure 9a-fluoro-11(3,17a,21-trihydroxy-16(3-methyl-4-pregnene-3,20-dione 21-acetate. [Pg.166]

Alternatively, as described in U.S. Patent 3,341,557, 6-dehydro-17-methyltestosterone may be used as the starting material. A mixture of 0.4 g of cuprous chloride, 20 ml of 4 M methylmagnesium bromide in ether and 60 ml of redistilled tetrahydrofuran was stirred and cooled in an ice bath during the addition of a mixture of 2.0 g of 6-dehydro-l 7-methyl-testosterone, 60 ml of redistilled tetrahydrofuran and 0.2 g of cuprous chloride. The ice bath was removed and stirring was continued for four hours. Ice and water were then carefully added, the solution acidified with 3N hydrochloric acid and extracted several times with ether. The combined ether extracts were washed with a brine-sodium carbonate solution, brine and then dried over anhydrous magnesium sulfate, filtered and then poured over a 75-g column of magnesium silicate (Florisil) packed wet with hexanes (Skellysolve B). The column was eluted with 250 ml of hexanes, 0.5 liter of 2% acetone, two liters of 4% acetone and 3.5 liters of 6% acetone in hexanes. [Pg.220]

The solution of the Grignard reagent prepared in (A) was cooled to 5° to 10°C and stirred while 22.7 g (0.11 mol) of dibenzo[a,e] cycloheptatrien-5-one was added in portions. After stirring for 1 hour during which time the reaction mixture was allowed to warm up to room temperature, the bulk of the tetrahydrofuran was distilled at 40° to 50°C under reduced pressure. Benzene, 150 ml, was added and the reaction mixture stirred and cooled in an ice-bath while water, 100 ml, was added gradually. The benzene layer was separated by decantation and the gelatinous residue extracted three times with 75 ml portions of boiling benzene. [Pg.421]

To approximately 1.3 g of hydrogen fluoride contained in a polyethylene bottle and maintained at -60°C was added 2.3 ml of tetrahydrofuran and then a solution of 500 mg (0.0012 mol) of 6a-fluoro-9/3,11/3-epoxy-16a-methyI-17a,21 -dihydroxy-1,4-pregnadiene-3,20-dione-2T acetate in two ml of methylene chloride. The steroid solution was rinsed in with an additional 1 ml of methylene chloride. The light red colored solution was then kept at approximately -30°C for 1 hour and at -10°C for 2 hours. At the end of this period it was mixed cautiously with an excess of cold sodium bicarbonate solution and the organic materiai extracted with the aid of additional methylene chloride. [Pg.487]

After this reaction-time, the evolution of hydrogen is ceased. Then there are added successively 60 parts dimethylformamide and 8 parts of p-chlorobenzylchloride and stirring and refluxing is continued for another two hours. The tetrahydrofuran is removed at atmospheric pressure. The dimethylformamide solution is poured onto water. The product, 1-[2,4-dichloro-/3-(p-chlorobenzyloxy)phenethyl] imidazole, is extracted with benzene. The extract is washed with water, dried, filtered and evaporated in vacuo. From the residual oily free base, the nitrate salt is prepared in the usual manner in 2-propanol by treatment with concentrated nitric acid, yielding, after recrystallization of the crude solid salt from a mixture of 2-propanol, methanol and diisopropylether, 1-[2,4-dichloro-/3-(p-chlorobenzyl-oxylphenethyl] imidazole nitrate MP 162°C. [Pg.552]

Synthesis of 16,16-dimethyl-trans-A -PGEi 2.35 g of the bis-tetrahydropyranyl ether were dissolved in 6 ml of tetrahydrofuran and 60 ml of 65%-acetic acid aqueous solution and the solution stirred at 60°C to 70°C for 20 minutes. The reaction mixture was extracted with ethyl acetate, and the organic layer was washed with water, dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using ethyl acetate-cyclohexane (2 3) as eluent to yield 270 mg of the title compound. [Pg.719]

The residue was dissolved in 75 ml of tetrahydrofuran, treated with charcoal, and sodium sulfate and filtered. This solution was added to a solution in 250 ml of tetrahydrofuran of phenyl magnesium bromide prepared from 17.7 ml (0.17 mol) of bromobenzene. This mixture was stirred and heated under reflux for 1 hour. It was then cooled and diluted with 400 ml of ether and sufficient 3N hydrochloric acid to make it acidic. The aqueous phase was separated, adjusted to pH 8 with 3N sodium hydroxide and extracted 3 times with 200 ml of ether. The ether extracts were combined, washed with water and dried over sodium sulfate. The residue left on removal of the ether in vacuo was crystallized from petroleum ether to give 3.3 g of 7-chloro-2,3-dihvdro-1-methyl-5-phenvl-1 H-1,4-benzodiazepine, according to U.S. Patent 3,624,703. [Pg.910]

The reaction mixture is diluted with dry tetrahydrofuran (25 ml) and allowed to stand at room temperature for 20 hours. Excess Grignard reagent is quenched by adding a saturated solution of ammonium chloride. The organic layer is separated and the aqueous layer is extracted with ethyl acetate. [Pg.912]


See other pages where Tetrahydrofuran, extraction is mentioned: [Pg.64]    [Pg.64]    [Pg.231]    [Pg.381]    [Pg.15]    [Pg.32]    [Pg.126]    [Pg.460]    [Pg.108]    [Pg.35]    [Pg.54]    [Pg.100]    [Pg.243]    [Pg.435]    [Pg.448]    [Pg.459]    [Pg.486]    [Pg.72]    [Pg.99]    [Pg.113]    [Pg.32]    [Pg.211]    [Pg.504]    [Pg.510]    [Pg.681]    [Pg.865]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



© 2024 chempedia.info